本文整理汇总了C++中SkOpSegment类的典型用法代码示例。如果您正苦于以下问题:C++ SkOpSegment类的具体用法?C++ SkOpSegment怎么用?C++ SkOpSegment使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了SkOpSegment类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: SkASSERT
void SkOpContour::topSortableSegment(const SkPoint& topLeft, SkPoint* bestXY,
SkOpSegment** topStart) {
int segmentCount = fSortedSegments.count();
SkASSERT(segmentCount > 0);
int sortedIndex = fFirstSorted;
fDone = true; // may be cleared below
for ( ; sortedIndex < segmentCount; ++sortedIndex) {
SkOpSegment* testSegment = fSortedSegments[sortedIndex];
if (testSegment->done()) {
if (sortedIndex == fFirstSorted) {
++fFirstSorted;
}
continue;
}
fDone = false;
SkPoint testXY = testSegment->activeLeftTop(true, NULL);
if (*topStart) {
if (testXY.fY < topLeft.fY) {
continue;
}
if (testXY.fY == topLeft.fY && testXY.fX < topLeft.fX) {
continue;
}
if (bestXY->fY < testXY.fY) {
continue;
}
if (bestXY->fY == testXY.fY && bestXY->fX < testXY.fX) {
continue;
}
}
*topStart = testSegment;
*bestXY = testXY;
}
}
示例2: FixWinding
void FixWinding(SkPath* path) {
SkPath::FillType fillType = path->getFillType();
if (fillType == SkPath::kInverseEvenOdd_FillType) {
fillType = SkPath::kInverseWinding_FillType;
} else if (fillType == SkPath::kEvenOdd_FillType) {
fillType = SkPath::kWinding_FillType;
}
SkPathPriv::FirstDirection dir;
if (one_contour(*path) && SkPathPriv::CheapComputeFirstDirection(*path, &dir)) {
if (dir != SkPathPriv::kCCW_FirstDirection) {
SkPath temp;
temp.reverseAddPath(*path);
*path = temp;
}
path->setFillType(fillType);
return;
}
SkChunkAlloc allocator(4096);
SkOpContourHead contourHead;
SkOpGlobalState globalState(nullptr, &contourHead SkDEBUGPARAMS(nullptr));
SkOpEdgeBuilder builder(*path, &contourHead, &allocator, &globalState);
builder.finish(&allocator);
SkASSERT(contourHead.next());
contourHead.resetReverse();
bool writePath = false;
SkOpSpan* topSpan;
globalState.setPhase(SkOpGlobalState::kFixWinding);
while ((topSpan = FindSortableTop(&contourHead))) {
SkOpSegment* topSegment = topSpan->segment();
SkOpContour* topContour = topSegment->contour();
SkASSERT(topContour->isCcw() >= 0);
#if DEBUG_WINDING
SkDebugf("%s id=%d nested=%d ccw=%d\n", __FUNCTION__,
topSegment->debugID(), globalState.nested(), topContour->isCcw());
#endif
if ((globalState.nested() & 1) != SkToBool(topContour->isCcw())) {
topContour->setReverse();
writePath = true;
}
topContour->markDone();
globalState.clearNested();
}
if (!writePath) {
path->setFillType(fillType);
return;
}
SkPath empty;
SkPathWriter woundPath(empty);
SkOpContour* test = &contourHead;
do {
if (test->reversed()) {
test->toReversePath(&woundPath);
} else {
test->toPath(&woundPath);
}
} while ((test = test->next()));
*path = *woundPath.nativePath();
path->setFillType(fillType);
}
示例3: SkASSERT
// please keep in sync with debugMergeMatches()
// Look to see if pt-t linked list contains same segment more than once
// if so, and if each pt-t is directly pointed to by spans in that segment,
// merge them
// keep the points, but remove spans so that the segment doesn't have 2 or more
// spans pointing to the same pt-t loop at different loop elements
void SkOpSpanBase::mergeMatches(SkOpSpanBase* opp) {
SkOpPtT* test = &fPtT;
SkOpPtT* testNext;
const SkOpPtT* stop = test;
do {
testNext = test->next();
if (test->deleted()) {
continue;
}
SkOpSpanBase* testBase = test->span();
SkASSERT(testBase->ptT() == test);
SkOpSegment* segment = test->segment();
if (segment->done()) {
continue;
}
SkOpPtT* inner = opp->ptT();
const SkOpPtT* innerStop = inner;
do {
if (inner->segment() != segment) {
continue;
}
if (inner->deleted()) {
continue;
}
SkOpSpanBase* innerBase = inner->span();
SkASSERT(innerBase->ptT() == inner);
// when the intersection is first detected, the span base is marked if there are
// more than one point in the intersection.
if (!zero_or_one(inner->fT)) {
innerBase->upCast()->release(test);
} else {
SkOPASSERT(inner->fT != test->fT);
if (!zero_or_one(test->fT)) {
testBase->upCast()->release(inner);
} else {
segment->markAllDone(); // mark segment as collapsed
SkDEBUGCODE(testBase->debugSetDeleted());
test->setDeleted();
SkDEBUGCODE(innerBase->debugSetDeleted());
inner->setDeleted();
}
}
#ifdef SK_DEBUG // assert if another undeleted entry points to segment
const SkOpPtT* debugInner = inner;
while ((debugInner = debugInner->next()) != innerStop) {
if (debugInner->segment() != segment) {
continue;
}
if (debugInner->deleted()) {
continue;
}
SkOPASSERT(0);
}
#endif
break;
} while ((inner = inner->next()) != innerStop);
} while ((test = testNext) != stop);
this->checkForCollapsedCoincidence();
}
示例4: FindSortableTop
SkOpSegment* FindSortableTop(const SkTArray<SkOpContour*, true>& contourList, bool* firstContour,
int* indexPtr, int* endIndexPtr, SkPoint* topLeft, bool* unsortable,
bool* done, bool binary) {
SkOpSegment* current = findSortableTop(contourList, indexPtr, endIndexPtr, topLeft, unsortable,
done, true);
if (!current) {
return NULL;
}
const int index = *indexPtr;
const int endIndex = *endIndexPtr;
if (*firstContour) {
current->initWinding(index, endIndex);
*firstContour = false;
return current;
}
int minIndex = SkMin32(index, endIndex);
int sumWinding = current->windSum(minIndex);
if (sumWinding != SK_MinS32) {
return current;
}
sumWinding = current->computeSum(index, endIndex, binary);
if (sumWinding != SK_MinS32) {
return current;
}
int contourWinding;
int oppContourWinding = 0;
// the simple upward projection of the unresolved points hit unsortable angles
// shoot rays at right angles to the segment to find its winding, ignoring angle cases
bool tryAgain;
double tHit;
SkScalar hitDx = 0;
SkScalar hitOppDx = 0;
do {
// if current is vertical, find another candidate which is not
// if only remaining candidates are vertical, then they can be marked done
SkASSERT(*indexPtr != *endIndexPtr && *indexPtr >= 0 && *endIndexPtr >= 0);
skipVertical(contourList, ¤t, indexPtr, endIndexPtr);
SkASSERT(*indexPtr != *endIndexPtr && *indexPtr >= 0 && *endIndexPtr >= 0);
tryAgain = false;
contourWinding = rightAngleWinding(contourList, ¤t, indexPtr, endIndexPtr, &tHit,
&hitDx, &tryAgain, false);
if (tryAgain) {
continue;
}
if (!binary) {
break;
}
oppContourWinding = rightAngleWinding(contourList, ¤t, indexPtr, endIndexPtr, &tHit,
&hitOppDx, &tryAgain, true);
} while (tryAgain);
current->initWinding(*indexPtr, *endIndexPtr, tHit, contourWinding, hitDx, oppContourWinding,
hitOppDx);
return current;
}
示例5: undoneSegment
SkOpSegment* SkOpContour::undoneSegment(SkOpSpanBase** startPtr, SkOpSpanBase** endPtr) {
SkOpSegment* segment = &fHead;
do {
if (segment->done()) {
continue;
}
segment->undoneSpan(startPtr, endPtr);
return segment;
} while ((segment = segment->next()));
return nullptr;
}
示例6: undoneSpan
SkOpSpan* SkOpContour::undoneSpan() {
SkOpSegment* testSegment = &fHead;
do {
if (testSegment->done()) {
continue;
}
return testSegment->undoneSpan();
} while ((testSegment = testSegment->next()));
fDone = true;
return nullptr;
}
示例7: undoneSegment
SkOpSegment* SkOpContour::undoneSegment(int* start, int* end) {
int segmentCount = fSegments.count();
for (int test = 0; test < segmentCount; ++test) {
SkOpSegment* testSegment = &fSegments[test];
if (testSegment->done()) {
continue;
}
testSegment->undoneSpan(start, end);
return testSegment;
}
return NULL;
}
示例8: AngleWinding
const SkOpAngle* AngleWinding(SkOpSpanBase* start, SkOpSpanBase* end, int* windingPtr,
bool* sortablePtr) {
// find first angle, initialize winding to computed fWindSum
SkOpSegment* segment = start->segment();
const SkOpAngle* angle = segment->spanToAngle(start, end);
if (!angle) {
*windingPtr = SK_MinS32;
return nullptr;
}
bool computeWinding = false;
const SkOpAngle* firstAngle = angle;
bool loop = false;
bool unorderable = false;
int winding = SK_MinS32;
do {
angle = angle->next();
if (!angle) {
return nullptr;
}
unorderable |= angle->unorderable();
if ((computeWinding = unorderable || (angle == firstAngle && loop))) {
break; // if we get here, there's no winding, loop is unorderable
}
loop |= angle == firstAngle;
segment = angle->segment();
winding = segment->windSum(angle);
} while (winding == SK_MinS32);
// if the angle loop contains an unorderable span, the angle order may be useless
// directly compute the winding in this case for each span
if (computeWinding) {
firstAngle = angle;
winding = SK_MinS32;
do {
SkOpSpanBase* startSpan = angle->start();
SkOpSpanBase* endSpan = angle->end();
SkOpSpan* lesser = startSpan->starter(endSpan);
int testWinding = lesser->windSum();
if (testWinding == SK_MinS32) {
testWinding = lesser->computeWindSum();
}
if (testWinding != SK_MinS32) {
segment = angle->segment();
winding = testWinding;
}
angle = angle->next();
} while (angle != firstAngle);
}
*sortablePtr = !unorderable;
*windingPtr = winding;
return angle;
}
示例9: findTopSegment
static SkOpSegment* findTopSegment(const SkTArray<SkOpContour*, true>& contourList, int* index,
int* endIndex, SkPoint* topLeft, bool* unsortable, bool* done, bool firstPass) {
SkOpSegment* result;
const SkOpSegment* lastTopStart = NULL;
int lastIndex = -1, lastEndIndex = -1;
do {
SkPoint bestXY = {SK_ScalarMax, SK_ScalarMax};
int contourCount = contourList.count();
SkOpSegment* topStart = NULL;
*done = true;
for (int cIndex = 0; cIndex < contourCount; ++cIndex) {
SkOpContour* contour = contourList[cIndex];
if (contour->done()) {
continue;
}
const SkPathOpsBounds& bounds = contour->bounds();
if (bounds.fBottom < topLeft->fY) {
*done = false;
continue;
}
if (bounds.fBottom == topLeft->fY && bounds.fRight < topLeft->fX) {
*done = false;
continue;
}
contour->topSortableSegment(*topLeft, &bestXY, &topStart);
if (!contour->done()) {
*done = false;
}
}
if (!topStart) {
return NULL;
}
*topLeft = bestXY;
result = topStart->findTop(index, endIndex, unsortable, firstPass);
if (!result) {
if (lastTopStart == topStart && lastIndex == *index && lastEndIndex == *endIndex) {
*done = true;
return NULL;
}
lastTopStart = topStart;
lastIndex = *index;
lastEndIndex = *endIndex;
}
} while (!result);
return result;
}
示例10: DEF_TEST
DEF_TEST(PathOpsAngleCircle, reporter) {
SkSTArenaAlloc<4096> allocator;
SkOpContourHead contour;
SkOpGlobalState state(&contour, &allocator SkDEBUGPARAMS(false) SkDEBUGPARAMS(nullptr));
contour.init(&state, false, false);
for (int index = 0; index < circleDataSetSize; ++index) {
CircleData& data = circleDataSet[index];
for (int idx2 = 0; idx2 < data.fPtCount; ++idx2) {
data.fShortPts[idx2] = data.fPts.fPts[idx2].asSkPoint();
}
switch (data.fPtCount) {
case 2:
contour.addLine(data.fShortPts);
break;
case 3:
contour.addQuad(data.fShortPts);
break;
case 4:
contour.addCubic(data.fShortPts);
break;
}
}
SkOpSegment* first = contour.first();
first->debugAddAngle(0, 1);
SkOpSegment* next = first->next();
next->debugAddAngle(0, 1);
PathOpsAngleTester::Orderable(*first->debugLastAngle(), *next->debugLastAngle());
}
示例11: SkASSERT
SkOpSegment* SkOpContour::nonVerticalSegment(SkOpSpanBase** start, SkOpSpanBase** end) {
int segmentCount = fSortedSegments.count();
SkASSERT(segmentCount > 0);
for (int sortedIndex = fFirstSorted; sortedIndex < segmentCount; ++sortedIndex) {
SkOpSegment* testSegment = fSortedSegments[sortedIndex];
if (testSegment->done()) {
continue;
}
SkOpSpanBase* span = testSegment->head();
SkOpSpanBase* testS, * testE;
while (SkOpSegment::NextCandidate(span, &testS, &testE)) {
if (!testSegment->isVertical(testS, testE)) {
*start = testS;
*end = testE;
return testSegment;
}
span = span->upCast()->next();
}
}
return NULL;
}
示例12: bridgeXor
// returns true if all edges were processed
static bool bridgeXor(SkTDArray<SkOpContour*>& contourList, SkPathWriter* simple) {
SkOpSegment* current;
int start, end;
bool unsortable = false;
bool closable = true;
while ((current = FindUndone(contourList, &start, &end))) {
do {
#if DEBUG_ACTIVE_SPANS
if (!unsortable && current->done()) {
DebugShowActiveSpans(contourList);
}
#endif
SkASSERT(unsortable || !current->done());
int nextStart = start;
int nextEnd = end;
SkOpSegment* next = current->findNextXor(&nextStart, &nextEnd, &unsortable);
if (!next) {
if (!unsortable && simple->hasMove()
&& current->verb() != SkPath::kLine_Verb
&& !simple->isClosed()) {
current->addCurveTo(start, end, simple, true);
SkASSERT(simple->isClosed());
}
break;
}
#if DEBUG_FLOW
SkDebugf("%s current id=%d from=(%1.9g,%1.9g) to=(%1.9g,%1.9g)\n", __FUNCTION__,
current->debugID(), current->xyAtT(start).fX, current->xyAtT(start).fY,
current->xyAtT(end).fX, current->xyAtT(end).fY);
#endif
current->addCurveTo(start, end, simple, true);
current = next;
start = nextStart;
end = nextEnd;
} while (!simple->isClosed() && (!unsortable || !current->done(SkMin32(start, end))));
if (!simple->isClosed()) {
SkASSERT(unsortable);
int min = SkMin32(start, end);
if (!current->done(min)) {
current->addCurveTo(start, end, simple, true);
current->markDone(min, 1);
}
closable = false;
}
simple->close();
#if DEBUG_ACTIVE_SPANS
DebugShowActiveSpans(contourList);
#endif
}
return closable;
}
示例13: contourRangeCheckY
static int contourRangeCheckY(const SkTArray<SkOpContour*, true>& contourList, SkOpSegment** currentPtr,
int* indexPtr, int* endIndexPtr, double* bestHit, SkScalar* bestDx,
bool* tryAgain, double* midPtr, bool opp) {
const int index = *indexPtr;
const int endIndex = *endIndexPtr;
const double mid = *midPtr;
const SkOpSegment* current = *currentPtr;
double tAtMid = current->tAtMid(index, endIndex, mid);
SkPoint basePt = current->ptAtT(tAtMid);
int contourCount = contourList.count();
SkScalar bestY = SK_ScalarMin;
SkOpSegment* bestSeg = NULL;
int bestTIndex = 0;
bool bestOpp;
bool hitSomething = false;
for (int cTest = 0; cTest < contourCount; ++cTest) {
SkOpContour* contour = contourList[cTest];
bool testOpp = contour->operand() ^ current->operand() ^ opp;
if (basePt.fY < contour->bounds().fTop) {
continue;
}
if (bestY > contour->bounds().fBottom) {
continue;
}
int segmentCount = contour->segments().count();
for (int test = 0; test < segmentCount; ++test) {
SkOpSegment* testSeg = &contour->segments()[test];
SkScalar testY = bestY;
double testHit;
int testTIndex = testSeg->crossedSpanY(basePt, &testY, &testHit, &hitSomething, tAtMid,
testOpp, testSeg == current);
if (testTIndex < 0) {
if (testTIndex == SK_MinS32) {
hitSomething = true;
bestSeg = NULL;
goto abortContours; // vertical encountered, return and try different point
}
continue;
}
if (testSeg == current && current->betweenTs(index, testHit, endIndex)) {
double baseT = current->t(index);
double endT = current->t(endIndex);
double newMid = (testHit - baseT) / (endT - baseT);
#if DEBUG_WINDING
double midT = current->tAtMid(index, endIndex, mid);
SkPoint midXY = current->xyAtT(midT);
double newMidT = current->tAtMid(index, endIndex, newMid);
SkPoint newXY = current->xyAtT(newMidT);
SkDebugf("%s [%d] mid=%1.9g->%1.9g s=%1.9g (%1.9g,%1.9g) m=%1.9g (%1.9g,%1.9g)"
" n=%1.9g (%1.9g,%1.9g) e=%1.9g (%1.9g,%1.9g)\n", __FUNCTION__,
current->debugID(), mid, newMid,
baseT, current->xAtT(index), current->yAtT(index),
baseT + mid * (endT - baseT), midXY.fX, midXY.fY,
baseT + newMid * (endT - baseT), newXY.fX, newXY.fY,
endT, current->xAtT(endIndex), current->yAtT(endIndex));
#endif
*midPtr = newMid * 2; // calling loop with divide by 2 before continuing
return SK_MinS32;
}
bestSeg = testSeg;
*bestHit = testHit;
bestOpp = testOpp;
bestTIndex = testTIndex;
bestY = testY;
}
}
abortContours:
int result;
if (!bestSeg) {
result = hitSomething ? SK_MinS32 : 0;
} else {
if (bestSeg->windSum(bestTIndex) == SK_MinS32) {
*currentPtr = bestSeg;
*indexPtr = bestTIndex;
*endIndexPtr = bestSeg->nextSpan(bestTIndex, 1);
SkASSERT(*indexPtr != *endIndexPtr && *indexPtr >= 0 && *endIndexPtr >= 0);
*tryAgain = true;
return 0;
}
result = bestSeg->windingAtT(*bestHit, bestTIndex, bestOpp, bestDx);
SkASSERT(result == SK_MinS32 || *bestDx);
}
double baseT = current->t(index);
double endT = current->t(endIndex);
*bestHit = baseT + mid * (endT - baseT);
return result;
}
示例14: FindSortableTop
SkOpSegment* FindSortableTop(const SkTArray<SkOpContour*, true>& contourList,
SkOpAngle::IncludeType angleIncludeType, bool* firstContour, int* indexPtr,
int* endIndexPtr, SkPoint* topLeft, bool* unsortable, bool* done, bool* onlyVertical,
bool firstPass) {
SkOpSegment* current = findTopSegment(contourList, indexPtr, endIndexPtr, topLeft, unsortable,
done, firstPass);
if (!current) {
return NULL;
}
const int startIndex = *indexPtr;
const int endIndex = *endIndexPtr;
if (*firstContour) {
current->initWinding(startIndex, endIndex, angleIncludeType);
*firstContour = false;
return current;
}
int minIndex = SkMin32(startIndex, endIndex);
int sumWinding = current->windSum(minIndex);
if (sumWinding == SK_MinS32) {
int index = endIndex;
int oIndex = startIndex;
do {
const SkOpSpan& span = current->span(index);
if ((oIndex < index ? span.fFromAngle : span.fToAngle) == NULL) {
current->addSimpleAngle(index);
}
sumWinding = current->computeSum(oIndex, index, angleIncludeType);
SkTSwap(index, oIndex);
} while (sumWinding == SK_MinS32 && index == startIndex);
}
if (sumWinding != SK_MinS32 && sumWinding != SK_NaN32) {
return current;
}
int contourWinding;
int oppContourWinding = 0;
// the simple upward projection of the unresolved points hit unsortable angles
// shoot rays at right angles to the segment to find its winding, ignoring angle cases
bool tryAgain;
double tHit;
SkScalar hitDx = 0;
SkScalar hitOppDx = 0;
do {
// if current is vertical, find another candidate which is not
// if only remaining candidates are vertical, then they can be marked done
SkASSERT(*indexPtr != *endIndexPtr && *indexPtr >= 0 && *endIndexPtr >= 0);
skipVertical(contourList, ¤t, indexPtr, endIndexPtr);
SkASSERT(current); // FIXME: if null, all remaining are vertical
SkASSERT(*indexPtr != *endIndexPtr && *indexPtr >= 0 && *endIndexPtr >= 0);
tryAgain = false;
contourWinding = rightAngleWinding(contourList, ¤t, indexPtr, endIndexPtr, &tHit,
&hitDx, &tryAgain, onlyVertical, false);
if (*onlyVertical) {
return current;
}
if (tryAgain) {
continue;
}
if (angleIncludeType < SkOpAngle::kBinarySingle) {
break;
}
oppContourWinding = rightAngleWinding(contourList, ¤t, indexPtr, endIndexPtr, &tHit,
&hitOppDx, &tryAgain, NULL, true);
} while (tryAgain);
current->initWinding(*indexPtr, *endIndexPtr, tHit, contourWinding, hitDx, oppContourWinding,
hitOppDx);
if (current->done()) {
return NULL;
}
return current;
}
示例15: FindChase
SkOpSegment* FindChase(SkTDArray<SkOpSpanBase*>* chase, SkOpSpanBase** startPtr,
SkOpSpanBase** endPtr) {
while (chase->count()) {
SkOpSpanBase* span;
chase->pop(&span);
SkOpSegment* segment = span->segment();
*startPtr = span->ptT()->next()->span();
bool done = true;
*endPtr = nullptr;
if (SkOpAngle* last = segment->activeAngle(*startPtr, startPtr, endPtr, &done)) {
*startPtr = last->start();
*endPtr = last->end();
#if TRY_ROTATE
*chase->insert(0) = span;
#else
*chase->append() = span;
#endif
return last->segment();
}
if (done) {
continue;
}
// find first angle, initialize winding to computed wind sum
int winding;
bool sortable;
const SkOpAngle* angle = AngleWinding(*startPtr, *endPtr, &winding, &sortable);
if (winding == SK_MinS32) {
continue;
}
int sumWinding SK_INIT_TO_AVOID_WARNING;
if (sortable) {
segment = angle->segment();
sumWinding = segment->updateWindingReverse(angle);
}
SkOpSegment* first = nullptr;
const SkOpAngle* firstAngle = angle;
while ((angle = angle->next()) != firstAngle) {
segment = angle->segment();
SkOpSpanBase* start = angle->start();
SkOpSpanBase* end = angle->end();
int maxWinding;
if (sortable) {
segment->setUpWinding(start, end, &maxWinding, &sumWinding);
}
if (!segment->done(angle)) {
if (!first && (sortable || start->starter(end)->windSum() != SK_MinS32)) {
first = segment;
*startPtr = start;
*endPtr = end;
}
// OPTIMIZATION: should this also add to the chase?
if (sortable) {
(void) segment->markAngle(maxWinding, sumWinding, angle);
}
}
}
if (first) {
#if TRY_ROTATE
*chase->insert(0) = span;
#else
*chase->append() = span;
#endif
return first;
}
}
return nullptr;
}