本文整理汇总了C++中SelectionMap类的典型用法代码示例。如果您正苦于以下问题:C++ SelectionMap类的具体用法?C++ SelectionMap怎么用?C++ SelectionMap使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了SelectionMap类的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: rendererAfterPosition
IntRect RenderView::selectionBounds() const
{
typedef WillBeHeapHashMap<RawPtrWillBeMember<RenderObject>, OwnPtrWillBeMember<RenderSelectionInfo> > SelectionMap;
SelectionMap selectedObjects;
RenderObject* os = m_selectionStart;
RenderObject* stop = rendererAfterPosition(m_selectionEnd, m_selectionEndPos);
while (os && os != stop) {
if ((os->canBeSelectionLeaf() || os == m_selectionStart || os == m_selectionEnd) && os->selectionState() != SelectionNone) {
// Blocks are responsible for painting line gaps and margin gaps. They must be examined as well.
selectedObjects.set(os, adoptPtrWillBeNoop(new RenderSelectionInfo(os)));
RenderBlock* cb = os->containingBlock();
while (cb && !cb->isRenderView()) {
OwnPtrWillBeMember<RenderSelectionInfo>& blockInfo = selectedObjects.add(cb, nullptr).storedValue->value;
if (blockInfo)
break;
blockInfo = adoptPtrWillBeNoop(new RenderSelectionInfo(cb));
cb = cb->containingBlock();
}
}
os = os->nextInPreOrder();
}
// Now create a single bounding box rect that encloses the whole selection.
LayoutRect selRect;
SelectionMap::iterator end = selectedObjects.end();
for (SelectionMap::iterator i = selectedObjects.begin(); i != end; ++i)
selRect.unite(i->value->absoluteSelectionRect());
return pixelSnappedIntRect(selRect);
}
示例2: add_rings
inline OutputIterator add_rings(SelectionMap const& map,
Geometry1 const& geometry1, Geometry2 const& geometry2,
RingCollection const& collection,
OutputIterator out)
{
typedef typename SelectionMap::const_iterator iterator;
for (iterator it = boost::begin(map);
it != boost::end(map);
++it)
{
if (! it->second.discarded
&& it->second.parent.source_index == -1)
{
GeometryOut result;
convert_and_add(result, geometry1, geometry2, collection,
it->first, it->second.reversed, false);
// Add children
for (typename std::vector<ring_identifier>::const_iterator child_it
= it->second.children.begin();
child_it != it->second.children.end();
++child_it)
{
iterator mit = map.find(*child_it);
if (mit != map.end()
&& ! mit->second.discarded)
{
convert_and_add(result, geometry1, geometry2, collection,
*child_it, mit->second.reversed, true);
}
}
*out++ = result;
}
}
return out;
}
示例3: document
IntRect RenderView::selectionBounds(bool clipToVisibleContent) const
{
document()->updateStyleIfNeeded();
typedef HashMap<RenderObject*, RenderSelectionInfo*> SelectionMap;
SelectionMap selectedObjects;
RenderObject* os = m_selectionStart;
RenderObject* stop = rendererAfterPosition(m_selectionEnd, m_selectionEndPos);
while (os && os != stop) {
if ((os->canBeSelectionLeaf() || os == m_selectionStart || os == m_selectionEnd) && os->selectionState() != SelectionNone) {
// Blocks are responsible for painting line gaps and margin gaps. They must be examined as well.
selectedObjects.set(os, new RenderSelectionInfo(os, clipToVisibleContent));
RenderBlock* cb = os->containingBlock();
while (cb && !cb->isRenderView()) {
RenderSelectionInfo* blockInfo = selectedObjects.get(cb);
if (blockInfo)
break;
selectedObjects.set(cb, new RenderSelectionInfo(cb, clipToVisibleContent));
cb = cb->containingBlock();
}
}
os = os->nextInPreOrder();
}
// Now create a single bounding box rect that encloses the whole selection.
IntRect selRect;
SelectionMap::iterator end = selectedObjects.end();
for (SelectionMap::iterator i = selectedObjects.begin(); i != end; ++i) {
RenderSelectionInfo* info = i->second;
selRect.unite(info->rect());
delete info;
}
return selRect;
}
示例4: add_rings
inline OutputIterator add_rings(SelectionMap const& map,
Geometry1 const& geometry1, Geometry2 const& geometry2,
RingCollection const& collection,
OutputIterator out)
{
typedef typename SelectionMap::const_iterator iterator;
typedef typename SelectionMap::mapped_type property_type;
typedef typename property_type::area_type area_type;
area_type const zero = 0;
std::size_t const min_num_points = core_detail::closure::minimum_ring_size
<
geometry::closure
<
typename boost::range_value
<
RingCollection const
>::type
>::value
>::value;
for (iterator it = boost::begin(map);
it != boost::end(map);
++it)
{
if (! it->second.discarded
&& it->second.parent.source_index == -1)
{
GeometryOut result;
convert_and_add(result, geometry1, geometry2, collection,
it->first, it->second.reversed, false);
// Add children
for (typename std::vector<ring_identifier>::const_iterator child_it
= it->second.children.begin();
child_it != it->second.children.end();
++child_it)
{
iterator mit = map.find(*child_it);
if (mit != map.end()
&& ! mit->second.discarded)
{
convert_and_add(result, geometry1, geometry2, collection,
*child_it, mit->second.reversed, true);
}
}
// Only add rings if they satisfy minimal requirements.
// This cannot be done earlier (during traversal), not
// everything is figured out yet (sum of positive/negative rings)
// TODO: individual rings can still contain less than 3 points.
if (geometry::num_points(result) >= min_num_points
&& math::larger(geometry::area(result), zero))
{
*out++ = result;
}
}
}
return out;
}