当前位置: 首页>>代码示例>>C++>>正文


C++ SSurface::Reverse方法代码示例

本文整理汇总了C++中SSurface::Reverse方法的典型用法代码示例。如果您正苦于以下问题:C++ SSurface::Reverse方法的具体用法?C++ SSurface::Reverse怎么用?C++ SSurface::Reverse使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在SSurface的用法示例。


在下文中一共展示了SSurface::Reverse方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: FromTransformationOf

SSurface SSurface::FromTransformationOf(SSurface *a,
                                        Vector t, Quaternion q, double scale,
                                        bool includingTrims)
{
    SSurface ret = {};

    ret.h = a->h;
    ret.color = a->color;
    ret.face = a->face;

    ret.degm = a->degm;
    ret.degn = a->degn;
    int i, j;
    for(i = 0; i <= 3; i++) {
        for(j = 0; j <= 3; j++) {
            ret.ctrl[i][j] = a->ctrl[i][j];
            ret.ctrl[i][j] = (ret.ctrl[i][j]).ScaledBy(scale);
            ret.ctrl[i][j] = (q.Rotate(ret.ctrl[i][j])).Plus(t);

            ret.weight[i][j] = a->weight[i][j];
        }
    }

    if(includingTrims) {
        STrimBy *stb;
        for(stb = a->trim.First(); stb; stb = a->trim.NextAfter(stb)) {
            STrimBy n = *stb;
            n.start  = n.start.ScaledBy(scale);
            n.finish = n.finish.ScaledBy(scale);
            n.start  = (q.Rotate(n.start)) .Plus(t);
            n.finish = (q.Rotate(n.finish)).Plus(t);
            ret.trim.Add(&n);
        }
    }

    if(scale < 0) {
        // If we mirror every surface of a shell, then it will end up inside
        // out. So fix that here.
        ret.Reverse();
    }

    return ret;
}
开发者ID:Evil-Spirit,项目名称:solvespace,代码行数:43,代码来源:surface.cpp

示例2: MakeCopyTrimAgainst

//-----------------------------------------------------------------------------
// Trim this surface against the specified shell, in the way that's appropriate
// for the specified Boolean operation type (and which operand we are). We
// also need a pointer to the shell that contains our own surface, since that
// contains our original trim curves.
//-----------------------------------------------------------------------------
SSurface SSurface::MakeCopyTrimAgainst(SShell *parent,
                                       SShell *sha, SShell *shb,
                                       SShell *into,
                                       int type)
{
    bool opA = (parent == sha);
    SShell *agnst = opA ? shb : sha;

    SSurface ret;
    // The returned surface is identical, just the trim curves change
    ret = *this;
    ret.trim = {};

    // First, build a list of the existing trim curves; update them to use
    // the split curves.
    STrimBy *stb;
    for(stb = trim.First(); stb; stb = trim.NextAfter(stb)) {
        STrimBy stn = *stb;
        stn.curve = (parent->curve.FindById(stn.curve))->newH;
        ret.trim.Add(&stn);
    }

    if(type == SShell::AS_DIFFERENCE && !opA) {
        // The second operand of a Boolean difference gets turned inside out
        ret.Reverse();
    }

    // Build up our original trim polygon; remember the coordinates could
    // be changed if we just flipped the surface normal, and we are using
    // the split curves (not the original curves).
    SEdgeList orig = {};
    ret.MakeEdgesInto(into, &orig, AS_UV);
    ret.trim.Clear();
    // which means that we can't necessarily use the old BSP...
    SBspUv *origBsp = SBspUv::From(&orig, &ret);

    // And now intersect the other shell against us
    SEdgeList inter = {};

    SSurface *ss;
    for(ss = agnst->surface.First(); ss; ss = agnst->surface.NextAfter(ss)) {
        SCurve *sc;
        for(sc = into->curve.First(); sc; sc = into->curve.NextAfter(sc)) {
            if(sc->source != SCurve::FROM_INTERSECTION) continue;
            if(opA) {
                if(sc->surfA.v != h.v || sc->surfB.v != ss->h.v) continue;
            } else {
                if(sc->surfB.v != h.v || sc->surfA.v != ss->h.v) continue;
            }

            int i;
            for(i = 1; i < sc->pts.n; i++) {
                Vector a = sc->pts.elem[i-1].p,
                       b = sc->pts.elem[i].p;

                Point2d auv, buv;
                ss->ClosestPointTo(a, &(auv.x), &(auv.y));
                ss->ClosestPointTo(b, &(buv.x), &(buv.y));

                int c = (ss->bsp) ? ss->bsp->ClassifyEdge(auv, buv, ss) : SBspUv::OUTSIDE;
                if(c != SBspUv::OUTSIDE) {
                    Vector ta = Vector::From(0, 0, 0);
                    Vector tb = Vector::From(0, 0, 0);
                    ret.ClosestPointTo(a, &(ta.x), &(ta.y));
                    ret.ClosestPointTo(b, &(tb.x), &(tb.y));

                    Vector tn = ret.NormalAt(ta.x, ta.y);
                    Vector sn = ss->NormalAt(auv.x, auv.y);

                    // We are subtracting the portion of our surface that
                    // lies in the shell, so the in-plane edge normal should
                    // point opposite to the surface normal.
                    bool bkwds = true;
                    if((tn.Cross(b.Minus(a))).Dot(sn) < 0) bkwds = !bkwds;
                    if(type == SShell::AS_DIFFERENCE && !opA) bkwds = !bkwds;
                    if(bkwds) {
                        inter.AddEdge(tb, ta, sc->h.v, 1);
                    } else {
                        inter.AddEdge(ta, tb, sc->h.v, 0);
                    }
                }
            }
        }
    }

    // Record all the points where more than two edges join, which I will call
    // the choosing points. If two edges join at a non-choosing point, then
    // they must either both be kept or both be discarded (since that would
    // otherwise create an open contour).
    SPointList choosing = {};
    SEdge *se;
    for(se = orig.l.First(); se; se = orig.l.NextAfter(se)) {
        choosing.IncrementTagFor(se->a);
        choosing.IncrementTagFor(se->b);
//.........这里部分代码省略.........
开发者ID:DanLipsitt,项目名称:solvespace,代码行数:101,代码来源:boolean.cpp


注:本文中的SSurface::Reverse方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。