本文整理汇总了C++中SMesh::recalculateBoundingBox方法的典型用法代码示例。如果您正苦于以下问题:C++ SMesh::recalculateBoundingBox方法的具体用法?C++ SMesh::recalculateBoundingBox怎么用?C++ SMesh::recalculateBoundingBox使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SMesh
的用法示例。
在下文中一共展示了SMesh::recalculateBoundingBox方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: init
void init(const HeightMap &hm, f32 scale, colour_func cf, IVideoDriver *driver)
{
Scale = scale;
const u32 mp = driver -> getMaximalPrimitiveCount();
Width = hm.width();
Height = hm.height();
const u32 sw = mp / (6 * Height); // the width of each piece
u32 i=0;
for(u32 y0 = 0; y0 < Height; y0 += sw)
{
u16 y1 = y0 + sw;
if (y1 >= Height)
y1 = Height - 1; // the last one might be narrower
addstrip(hm, cf, y0, y1, i);
++i;
}
if (i<Mesh->getMeshBufferCount())
{
// clear the rest
for (u32 j=i; j<Mesh->getMeshBufferCount(); ++j)
{
Mesh->getMeshBuffer(j)->drop();
}
Mesh->MeshBuffers.erase(i,Mesh->getMeshBufferCount()-i);
}
// set dirty flag to make sure that hardware copies of this
// buffer are also updated, see IMesh::setHardwareMappingHint
Mesh->setDirty();
Mesh->recalculateBoundingBox();
}
示例2: init
void init(const HeightMap &hm, f32 scale, colour_func cf, IVideoDriver *driver)
{
Scale = scale;
const u32 mp = driver -> getMaximalPrimitiveCount();
Width = hm.width();
Height = hm.height();
const u32 sw = mp / (6 * Height); // the width of each piece
u32 i=0;
for(u32 y0 = 0; y0 < Height; y0 += sw)
{
u16 y1 = y0 + sw;
if (y1 >= Height)
y1 = Height - 1; // the last one might be narrower
addstrip(hm, cf, y0, y1, i);
++i;
}
if (i<Mesh->getMeshBufferCount())
{
// clear the rest
for (u32 j=i; j<Mesh->getMeshBufferCount(); ++j)
{
Mesh->getMeshBuffer(j)->drop();
}
Mesh->MeshBuffers.erase(i,Mesh->getMeshBufferCount()-i);
}
Mesh->recalculateBoundingBox();
}
示例3: createMesh
//! Creates/loads an animated mesh from the file.
IAnimatedMesh* CSMFMeshFileLoader::createMesh(io::IReadFile* file)
{
// create empty mesh
SMesh *mesh = new SMesh();
// load file
u16 version;
u8 flags;
s32 limbCount;
s32 i;
io::BinaryFile::read(file, version);
io::BinaryFile::read(file, flags);
io::BinaryFile::read(file, limbCount);
// load mesh data
core::matrix4 identity;
for (i=0; i < limbCount; ++i)
loadLimb(file, mesh, identity);
// recalculate buffer bounding boxes
for (i=0; i < (s32)mesh->getMeshBufferCount(); ++i)
mesh->getMeshBuffer(i)->recalculateBoundingBox();
mesh->recalculateBoundingBox();
SAnimatedMesh *am = new SAnimatedMesh();
am->addMesh(mesh);
mesh->drop();
am->recalculateBoundingBox();
return am;
}
示例4: createMeshFromSoftBody
IMesh* MeshTools::createMeshFromSoftBody(btSoftBody* softBody)
{
SMeshBuffer* buffer = new SMeshBuffer();
video::S3DVertex vtx;
vtx.Color.set(255,255,255,255);
/* Each soft body contain an array of vertices (nodes/particles_mass) */
btSoftBody::tNodeArray& nodes(softBody->m_nodes);
// Convert bullet nodes to vertices
for(int i=0;i<nodes.size();++i)
{
const btSoftBody::Node& n=nodes[i];
const btVector3 normal=n.m_n;
const btVector3 pos=n.m_x;
vtx.Pos.set(pos.getX(), pos.getY(), pos.getZ());
vtx.Normal.set(normal.getX(), normal.getY(), normal.getZ());
// TODO: calculate texture coords
//vtx.TCoords.set(tsx, tsy);
buffer->Vertices.push_back(vtx);
}
// Convert triangles of the softbody to an index list
for(int i=0;i<softBody->m_faces.size();++i)
{
auto faces = softBody->m_faces;
btSoftBody::Node* node_0=faces[i].m_n[0];
btSoftBody::Node* node_1=faces[i].m_n[1];
btSoftBody::Node* node_2=faces[i].m_n[2];
const int indices[] =
{
int(node_0-&nodes[0]),
int(node_1-&nodes[0]),
int(node_2-&nodes[0])
};
for(int j=0;j<3;++j)
buffer->Indices.push_back(indices[j]);
}
buffer->recalculateBoundingBox();
// Default the mesh to stream because most likely we will be updating
// the vertex positions every frame to deal with softbody movement.
buffer->setHardwareMappingHint(EHM_STREAM);
SMesh* mesh = new SMesh();
mesh->addMeshBuffer(buffer);
mesh->recalculateBoundingBox();
buffer->drop();
return mesh;
}
示例5: readMesh
//! reads a mesh sections and creates a mesh from it
IAnimatedMesh* CIrrMeshFileLoader::readMesh(io::IXMLReader* reader)
{
SAnimatedMesh* animatedmesh = new SAnimatedMesh();
SMesh* mesh = new SMesh();
animatedmesh->addMesh(mesh);
mesh->drop();
core::stringc bbSectionName = "boundingBox";
core::stringc bufferSectionName = "buffer";
core::stringc meshSectionName = "mesh";
if (!reader->isEmptyElement())
while(reader->read())
{
if (reader->getNodeType() == io::EXN_ELEMENT)
{
const wchar_t* nodeName = reader->getNodeName();
if (bbSectionName == nodeName)
{
// inside a bounding box, ignore it for now because
// we are calculating this anyway ourselves later.
}
else
if (bufferSectionName == nodeName)
{
// we've got a mesh buffer
IMeshBuffer* buffer = readMeshBuffer(reader);
if (buffer)
{
mesh->addMeshBuffer(buffer);
buffer->drop();
}
}
else
skipSection(reader, true); // unknown section
} // end if node type is element
else
if (reader->getNodeType() == io::EXN_ELEMENT_END)
{
if (meshSectionName == reader->getNodeName())
{
// end of mesh section reached, cancel out
break;
}
}
} // end while reader->read();
mesh->recalculateBoundingBox();
animatedmesh->recalculateBoundingBox();
return animatedmesh;
}
示例6: SMesh
irr::scene::IMesh* CGWIC_Cell::TerrainToMesh(int LOD)
{
SMesh* out = new SMesh();
CDynamicMeshBuffer* buff = new CDynamicMeshBuffer(EVT_2TCOORDS,EIT_16BIT);
terrain->getMeshBufferForLOD(*buff,LOD);
const u32 vertCnt = buff->getVertexCount();
S3DVertex2TCoords* mbv = reinterpret_cast<S3DVertex2TCoords*> (buff->getVertexBuffer().getData());
vector3df scale = terrain->getScale();
for (u32 i=0; i<vertCnt; i++) mbv[i].Pos *= scale;
out->addMeshBuffer(buff);
out->recalculateBoundingBox();
buff->drop();
terrain->setPosition(terrain->getPosition());
return out;
}
示例7: createHillPlaneMesh
// creates a hill plane
IAnimatedMesh* CGeometryCreator::createHillPlaneMesh(const core::dimension2d<f32>& tileSize, const core::dimension2d<s32>& tc,
video::SMaterial* material, f32 hillHeight, const core::dimension2d<f32>& ch,
const core::dimension2d<f32>& textureRepeatCount)
{
core::dimension2d<s32> tileCount = tc;
tileCount.Height += 1;
tileCount.Width += 1;
core::dimension2d<f32> countHills = ch;
SMeshBuffer* buffer = new SMeshBuffer();
SMesh* mesh = new SMesh();
video::S3DVertex vtx;
vtx.Color.set(255,255,255,255);
vtx.Normal.set(0,0,0);
if (countHills.Width < 0.01f) countHills.Width = 1;
if (countHills.Height < 0.01f) countHills.Height = 1;
f32 halfX = (tileSize.Width * tileCount.Width) / 2;
f32 halfY = (tileSize.Height * tileCount.Height) / 2;
// create vertices
s32 x = 0;
s32 y = 0;
core::dimension2d<f32> tx;
tx.Width = 1.0f / (tileCount.Width / textureRepeatCount.Width);
tx.Height = 1.0f / (tileCount.Height / textureRepeatCount.Height);
for (x=0; x<tileCount.Width; ++x)
for (y=0; y<tileCount.Height; ++y)
{
vtx.Pos.set(tileSize.Width * x - halfX, 0, tileSize.Height * y - halfY);
vtx.TCoords.set(-(f32)x * tx.Width, (f32)y * tx.Height);
if (hillHeight)
vtx.Pos.Y = (f32)(sin(vtx.Pos.X * countHills.Width * engine::core::PI / halfX) *
cos(vtx.Pos.Z * countHills.Height * engine::core::PI / halfY))
*hillHeight;
buffer->Vertices.push_back(vtx);
}
// create indices
for (x=0; x<tileCount.Width-1; ++x)
for (y=0; y<tileCount.Height-1; ++y)
{
s32 current = y*tileCount.Width + x;
buffer->Indices.push_back(current);
buffer->Indices.push_back(current + 1);
buffer->Indices.push_back(current + tileCount.Width);
buffer->Indices.push_back(current + 1);
buffer->Indices.push_back(current + 1 + tileCount.Width);
buffer->Indices.push_back(current + tileCount.Width);
}
// recalculate normals
for (s32 i=0; i<(s32)buffer->Indices.size(); i+=3)
{
core::plane3d<f32> p(
buffer->Vertices[buffer->Indices[i+0]].Pos,
buffer->Vertices[buffer->Indices[i+1]].Pos,
buffer->Vertices[buffer->Indices[i+2]].Pos);
p.Normal.normalize();
buffer->Vertices[buffer->Indices[i+0]].Normal = p.Normal;
buffer->Vertices[buffer->Indices[i+1]].Normal = p.Normal;
buffer->Vertices[buffer->Indices[i+2]].Normal = p.Normal;
}
if (material)
buffer->Material = *material;
buffer->recalculateBoundingBox();
SAnimatedMesh* animatedMesh = new SAnimatedMesh();
mesh->addMeshBuffer(buffer);
mesh->recalculateBoundingBox();
animatedMesh->addMesh(mesh);
animatedMesh->recalculateBoundingBox();
mesh->drop();
buffer->drop();
return animatedMesh;
}
示例8: crosses
//.........这里部分代码省略.........
}
};
Visitor visitor;
tree.triangulate(triangles, section, min_height, max_height, &visitor);
//tree.sweep(triangles, section, &visitor);
//cout << "num triangle points: " << triangles.size() << endl;
vector<QuadTreePtr> leaves;
tree.dumpLeaves(leaves);
//cout << "num leaves: " << leaves.size() << endl;
/*
for (QuadTreePtr p1 : leaves)
for (QuadTreePtr p2 : leaves)
if (p1 != p2)
if (p1->isAdjacent(p2))
if (!visitor.has(p1, p2))
{
auto sz1 = p1->region.getSize();
auto sz2 = p2->region.getSize();
auto c1 = p1->region.getCenter();
auto c2 = p2->region.getCenter();
char const* path1 = p1->getPath().c_str();
char const* path2 = p2->getPath().c_str();
cout << path1 << endl;
cout << path2 << endl;
cout << "Missing pair of adjacent vertices." << endl;
}
float x1 = section.UpperLeftCorner.X;
float x2 = section.LowerRightCorner.X;
float y1 = section.UpperLeftCorner.Y;
float y2 = section.LowerRightCorner.Y;
*/
/*
d---c
| / |
a---b
*/
/*
S3DVertex sa;
sa.Pos = vector3df(x1, y1, 0);
PsblVertPtr a = new PossibleVertex(sa);
S3DVertex sb;
sb.Pos = vector3df(x2, y1, 0);
PsblVertPtr b = new PossibleVertex(sb);
S3DVertex sc;
sc.Pos = vector3df(x2, y2, 0);
PsblVertPtr c = new PossibleVertex(sc);
S3DVertex sd;
sd.Pos = vector3df(x1, y2, 0);
PsblVertPtr d = new PossibleVertex(sd);
// a-b-c
// a-c-d
triangles.push_back(a);
triangles.push_back(b);
triangles.push_back(c);
triangles.push_back(a);
triangles.push_back(c);
triangles.push_back(d);
triangles.push_back(c);
triangles.push_back(b);
triangles.push_back(a);
triangles.push_back(d);
triangles.push_back(c);
triangles.push_back(a);
*/
SMeshBuffer* buffer = new SMeshBuffer();
for (auto pv : triangles)
pv->addToMeshBuf(buffer, vector3df());
if (buffer->getIndexCount() % 3 > 0)
throw std::logic_error("SurfaceQuadTree triangulation added a 'triangle' with less than 3 vertices in it.");
//cout << "num vertices " << buffer->getVertexCount() << endl;
//cout << "num indices " << buffer->getIndexCount() << endl;
buffer->recalculateBoundingBox();
buffer->setHardwareMappingHint(EHM_STATIC);
SMesh* mesh = new SMesh();
mesh->addMeshBuffer(buffer);
mesh->recalculateBoundingBox();
buffer->drop();
return mesh;
}
示例9: createMesh
//.........这里部分代码省略.........
u16 attrib=0;
core::stringc token;
token.reserve(32);
while (file->getPos() < filesize)
{
if (!binary)
{
if (getNextToken(file, token) != "facet")
{
if (token=="endsolid")
break;
mesh->drop();
return 0;
}
if (getNextToken(file, token) != "normal")
{
mesh->drop();
return 0;
}
}
getNextVector(file, normal, binary);
if (!binary)
{
if (getNextToken(file, token) != "outer")
{
mesh->drop();
return 0;
}
if (getNextToken(file, token) != "loop")
{
mesh->drop();
return 0;
}
}
for (u32 i=0; i<3; ++i)
{
if (!binary)
{
if (getNextToken(file, token) != "vertex")
{
mesh->drop();
return 0;
}
}
getNextVector(file, vertex[i], binary);
}
if (!binary)
{
if (getNextToken(file, token) != "endloop")
{
mesh->drop();
return 0;
}
if (getNextToken(file, token) != "endfacet")
{
mesh->drop();
return 0;
}
}
else
{
file->read(&attrib, 2);
#ifdef __BIG_ENDIAN__
attrib = os::Byteswap::byteswap(attrib);
#endif
}
SMeshBuffer* mb = reinterpret_cast<SMeshBuffer*>(mesh->getMeshBuffer(mesh->getMeshBufferCount()-1));
u32 vCount = mb->getVertexCount();
video::SColor color(0xffffffff);
if (attrib & 0x8000)
color = video::A1R5G5B5toA8R8G8B8(attrib);
if (normal==core::vector3df())
normal=core::plane3df(vertex[2],vertex[1],vertex[0]).Normal;
mb->Vertices.push_back(video::S3DVertex(vertex[2],normal,color, core::vector2df()));
mb->Vertices.push_back(video::S3DVertex(vertex[1],normal,color, core::vector2df()));
mb->Vertices.push_back(video::S3DVertex(vertex[0],normal,color, core::vector2df()));
mb->Indices.push_back(vCount);
mb->Indices.push_back(vCount+1);
mb->Indices.push_back(vCount+2);
} // end while (file->getPos() < filesize)
mesh->getMeshBuffer(0)->recalculateBoundingBox();
// Create the Animated mesh if there's anything in the mesh
SAnimatedMesh* pAM = 0;
if ( 0 != mesh->getMeshBufferCount() )
{
mesh->recalculateBoundingBox();
pAM = new SAnimatedMesh();
pAM->Type = EAMT_OBJ;
pAM->addMesh(mesh);
pAM->recalculateBoundingBox();
}
mesh->drop();
return pAM;
}
示例10: CreateConeSceneNode
IMeshSceneNode* CustomSceneNodeManager::CreateConeSceneNode(scene::ISceneManager* sceneManager, s32 id, SColor& color, unsigned int resolution, float radius, float height)
{
if (resolution >= 4)
{
/*IMesh* newConeMesh = sceneManager->getGeometryCreator()->createConeMesh(radius, height, resolution, color, color);
IMeshSceneNode* node = sceneManager->addMeshSceneNode(newConeMesh);
sceneManager->getMeshCache()->addMesh(irr::io::path("ConeMesh"), (irr::scene::IAnimatedMesh*)newConeMesh);
newConeMesh->drop();*/
SMesh* newConeMesh = new SMesh();
SMeshBuffer* buf = new SMeshBuffer();
newConeMesh->addMeshBuffer(buf);
buf->MappingHint_Vertex = EHM_STATIC;
buf->MappingHint_Index = EHM_STATIC;
buf->drop();
int noWarningSignedResolution = resolution;
float currentTheta = 0.0f;
float skipAmount = 2.0f*PI / (float)resolution;
float halfHeight = height / 2.0f;
S3DVertex temp1 = S3DVertex(Vector3(0.0f, halfHeight, 0.0f), Vector3_Zero, color, vector2d<f32>(0.0f, 0.0f));
S3DVertex temp2 = S3DVertex(Vector3(0.0f, -halfHeight, 0.0f), Vector3_Zero, color, vector2d<f32>(0.0f, 1.0f));
for(int i = 0; i < noWarningSignedResolution; i++)
{
float x = cosf(currentTheta) * radius;
float z = sinf(currentTheta) * radius;
temp2.Pos.X = x;
temp2.Pos.Z = z;
temp2.TCoords.X = currentTheta / 2.0f*PI;
buf->Vertices.push_back(temp2);
currentTheta += skipAmount;
}
buf->Vertices.push_back(temp1);
//Get side indices
for(int i = 0; i < noWarningSignedResolution - 1; i++)
{
buf->Indices.push_back(i);
buf->Indices.push_back(buf->Vertices.size()-1);
buf->Indices.push_back(i+1);
}
buf->Indices.push_back(buf->Vertices.size()-2);
buf->Indices.push_back(buf->Vertices.size()-1);
buf->Indices.push_back(0);
temp2.Pos.X = 0.0f;
temp2.Pos.Z = 0.0f;
buf->Vertices.push_back(temp2);
//Get bottom indices
for(int i = 0; i < noWarningSignedResolution - 1; i++)
{
buf->Indices.push_back(i);
buf->Indices.push_back(i+1);
buf->Indices.push_back(buf->Vertices.size()-1);
}
buf->Indices.push_back(buf->Vertices.size()-1);
buf->Indices.push_back(buf->Vertices.size()-3);
buf->Indices.push_back(0);
//Calculate normals
CalculateNormals(buf->Vertices, buf->Indices);
buf->recalculateBoundingBox();
newConeMesh->recalculateBoundingBox();
IMeshSceneNode* node = sceneManager->addMeshSceneNode(newConeMesh);
newConeMesh->drop();
return node;
}
return NULL;
}
示例11: CreateCapsuleSceneNode
//.........这里部分代码省略.........
temp1.TCoords.Y = currentPhi / PI;
buf->Vertices.push_back(temp1);
currentTheta += thetaSkipAmount;
}
currentTheta = 0.0f;
currentPhi += phiSkipAmount;
}
temp1.Pos.X = 0.0f;
temp1.Pos.Y = -(halfHeight + radius);
temp1.Pos.Z = 0.0f;
buf->Vertices.push_back(temp1);
//Top vertex indices
for(unsigned int i = 1; i <= resolution; i++)
{
if (i == resolution)
{
buf->Indices.push_back(i);
buf->Indices.push_back(0);
buf->Indices.push_back(1);
}
else
{
buf->Indices.push_back(i);
buf->Indices.push_back(0);
buf->Indices.push_back(i + 1);
}
}
//Get indices
int i = 1 + resolution;
while(i < buf->Vertices.size() - 1)
{
for(unsigned int j = 1; j < resolution; j++)
{
buf->Indices.push_back(i);
buf->Indices.push_back(i - noWarningSignedResolution);
buf->Indices.push_back(i - noWarningSignedResolution + 1);
buf->Indices.push_back(i);
buf->Indices.push_back(i - noWarningSignedResolution + 1);
buf->Indices.push_back(i + 1);
i++;
}
buf->Indices.push_back(i);
buf->Indices.push_back(i - noWarningSignedResolution);
buf->Indices.push_back(i - noWarningSignedResolution + 1 - resolution);
buf->Indices.push_back(i);
buf->Indices.push_back(i - noWarningSignedResolution + 1 - resolution);
buf->Indices.push_back(i + 1 - resolution);
i++;
}
//Bottom vertex indices
for(int i = resolution; i >= 1 ; i--)
{
if (i == 1)
{
/*buf->Indices.push_back(i);
buf->Indices.push_back(0);
buf->Indices.push_back(1);*/
buf->Indices.push_back(buf->Vertices.size() -1);
buf->Indices.push_back(buf->Vertices.size() -1 - i);
buf->Indices.push_back(buf->Vertices.size() - 1 - resolution);
}
else
{
buf->Indices.push_back(buf->Vertices.size() -1);
buf->Indices.push_back(buf->Vertices.size() -1 - i);
buf->Indices.push_back(buf->Vertices.size() - i);
}
}
//Calculate normals
CalculateNormals(buf->Vertices, buf->Indices);
buf->recalculateBoundingBox();
newCapsuleMesh->recalculateBoundingBox();
IMeshSceneNode* node = sceneManager->addMeshSceneNode(newCapsuleMesh);
newCapsuleMesh->drop();
return node;
}
return NULL;
}
示例12: createMeshFromHeightmap
//.........这里部分代码省略.........
vert.Pos.set(x, y, thisHeight);
// I'm only averaging normals along the 4 compass directions. It's
// arguable whether diagonals should count; I chose to ignore diagonals.
// Ignoring diagonals allows me to assume the "run" in rise/run is always
// just one unit; if you add diagonals here you'll also need to change
// the slope calculation to use the actual distance instead of assuming 1.
vector2di offsetsArray[] = {
vector2di( 1, 0), // 3 o'clock
vector2di( 0, 1), // 12 o'clock
vector2di(-1, 0), // 9 o'clock
vector2di( 0,-1) // 6 o'clock
};
// Calculate the normals of the surrounding slopes.
// Uses the image, not just the tile patch size, so it will
// calculate correct normals for vertices on tile edges.
for (size_t i=-0; i < 4; ++i)
{
vector2di offset = vector2di(x,y) + offsetsArray[i];
// Skip this offset if it's outside the image
if (offset.X < 0 || offset.Y < 0 || offset.X >= (s32)imageDimension.Width || offset.Y >= (s32)imageDimension.Height)
continue;
vector2di otherPixelPos(
startAtPixel.X+x+offset.X,
startAtPixel.Y-y-offset.Y
);
float otherHeight = 255 - image->getPixel((u32)otherPixelPos.X, (u32)otherPixelPos.Y).getAverage();
// The code Irrlicht's in terrain scene node does all kinds of complicated
// business with cross products and such - waaay over complicated. You don't need
// all that stuff. Dude it' s a heightmap: all you need to worray about is
// rise over run on unit intervals! Algebra 1 type stuff, y = mx + c
// Calculate the rise of the line over the run, taking into account the fact
// that the offset could be in either direction.
float rise = (offset.X < 0 || offset.Y < 0)? thisHeight - otherHeight : otherHeight - thisHeight;
// Assuming that run = 1, m = rise / run is just m = rise.
float m = rise;
// The the slope of the normal is just the negative of the reciprocal of the line slope.
float n = -1.0f / rise;
// The X,Y of the normal vector is just going to be the X and Y of the offset
// (think about it - obviously the normal of the slope must tilt in the direction of the run)
// and the Z of the normal vector is just the slope of the normal over that run.
vector3df normVect(offset.X, offset.Y, n);
//vert.Normal += normVect;
}
//vert.Normal.normalize();
vert.Normal.set(0,0,-1.0f);
}
}
// Pre-allocate index data to 2*3*Width*Height for triangles.
// There is actually 1 less square per count of vertices though,
// for instance if you had 2x2 vertices, you only have 1 square.
buffer->Indices.set_used(2*3*(useTileSize.Width-1)*(useTileSize.Height-1));
// Start with 1 and generate all the triangles from their top right corners.
// Like this (A is top right corner at x,y):
//
// y=1 B---A
// | / |
// y=0 C---D
// x=0 x=1
for (u32 dst=0, x=1; x < useTileSize.Width; ++x)
{
for (u32 y=1; y < useTileSize.Height; ++y)
{
u32 A = getIndex(useTileSize, x, y );
u32 B = getIndex(useTileSize, x-1, y );
u32 C = getIndex(useTileSize, x-1, y-1 );
u32 D = getIndex(useTileSize, x, y-1 );
buffer->Indices[dst++] = C;
buffer->Indices[dst++] = B;
buffer->Indices[dst++] = A;
buffer->Indices[dst++] = D;
buffer->Indices[dst++] = C;
buffer->Indices[dst++] = A;
}
}
buffer->recalculateBoundingBox();
buffer->setHardwareMappingHint(EHM_STATIC);
SMesh* mesh = new SMesh();
mesh->addMeshBuffer(buffer);
mesh->recalculateBoundingBox();
buffer->drop();
return mesh;
}
示例13: axis
//.........这里部分代码省略.........
normal.X = normals[p];
normal.Y = -normals[p+1]; //left-handed->right-handed
normal.Z = normals[p+2];
} else {
normal.X = 0;
normal.Y = 0;
normal.Z = 1;
}
}
for(int k=0; k < 3; ++k) {
long orgVertexIndex = si.triangles[j * 3 + k];
if (ai.normalPerVertex) {
int p;
if (normalIndices.length()) {
p = normalIndices[j*3+k]*3;
} else {
p = orgVertexIndex*3;
}
normal.X = normals[p];
normal.Y = -normals[p+1]; //left-handed -> right-handed
normal.Z = normals[p+2];
}
int p = orgVertexIndex * 3;
vertex.X = scale.X*vertices[p];
vertex.Y = -scale.Y*vertices[p+1]; // left-handed -> right-handed
vertex.Z = scale.Z*vertices[p+2];
//std::cout << vertices[p] <<"," << vertices[p+1] << "," << vertices[p+2] << std::endl;
vector2df texc;
if (textureCoordinate) {
texc.X = textureCoordinate[ai.textureCoordIndices[j*3+k]*2];
texc.Y = textureCoordinate[ai.textureCoordIndices[j*3+k]*2+1];
}
// redundant vertices
mb->Vertices.push_back(video::S3DVertex(vertex,normal,color, texc));
}
mb->Indices.push_back(vCount);
mb->Indices.push_back(vCount+2);
mb->Indices.push_back(vCount+1);
vCount += 3;
}
mesh->getMeshBuffer(0)->recalculateBoundingBox();
// Create the Animated mesh if there's anything in the mesh
SAnimatedMesh* pAM = 0;
if ( 0 != mesh->getMeshBufferCount() )
{
mesh->recalculateBoundingBox();
pAM = new SAnimatedMesh();
pAM->Type = EAMT_OBJ;
pAM->addMesh(mesh);
pAM->recalculateBoundingBox();
}
mesh->drop();
vector3df noscale(1,1,1);
IMeshSceneNode *node
= i_mgr->addMeshSceneNode(mesh, this, -1,
pos,
rpy,
noscale);
if (ai.textureIndex >= 0) {
const TextureInfo& ti = txs[ai.textureIndex];
//std::cout << "url:" << ti.url << std::endl;
video::IVideoDriver* driver = i_mgr->getVideoDriver();
const char *path = ti.url;
SMaterial& mat = node->getMaterial(0);
ITexture *texture = driver->getTexture(path);
mat.setTexture( 0, texture);
}
}
const SensorInfoSequence& sensors = i_li.sensors;
for (unsigned int i=0; i<sensors.length(); i++) {
const SensorInfo& si = sensors[i];
std::string type(si.type);
if (type == "Vision") {
//std::cout << si.name << std::endl;
ISceneNode *camera = i_mgr->addEmptySceneNode(this);
camera->setName(si.name);
camera->setPosition(vector3df( si.translation[0],
-si.translation[1],
si.translation[2]));
Vector3 axis(si.rotation[0],
si.rotation[1],
si.rotation[2]);
Matrix33 R;
hrp::calcRodrigues(R, axis, si.rotation[3]);
Vector3 rpy(rpyFromRot(R));
camera->setRotation(vector3df(-180/M_PI*rpy[0],
180/M_PI*rpy[1],
-180/M_PI*rpy[2]));
m_cameraInfos.push_back(new GLcamera(si, camera));
}
}
}
示例14: splitMeshZ
//.........这里部分代码省略.........
// 1 cont. AB' AB' AB' replaces B in P
// 2 - B B proper is in Q and not in P
// 2 cont. - - Link B-C is not split
// 3 - C C proper is in Q and not in P
// 3 cont. CA' CA' CA' replaces C in P
//
// Now, read the columns P and Q vertically top to bottom to see the resultant vertex order.
// The triangle P is trivially still the correct winding order; it is just a smaller triangle now.
// The new quad Q retains the old triangle's winding order property for the following reason:
// As you wrapped around a full circle in old triangle A-B-C you would have traversed C-A then A-B.
// The link C-A has been cut and vertex CA' inserted.
// The link A-B has been cut and vertex AB' inserted.
// If you traverse the new shape starting from the _middle_ you follow the following path:
// B-C C-CA' CA'-AB' AB'-B B-C (again)
// Compare to old triangle:
// B-C C-A A-B B-C (again)
// Even though vertex A has been cut off and replaced with two vertices, the two
// new vertices lie along the path that the old links took and are in the new shape in the right order.
mid1 = linkSplitter.processLink(leftShape, rightShape, a, b);
mid2 = linkSplitter.processLink(leftShape, rightShape, b, c);
mid3 = linkSplitter.processLink(leftShape, rightShape, c, a);
}
// If a triangle was split then two of those three midpoints are inhabited by a vertex.
// We want to get them both in mid1 and mid2 AND we need them in correct order.
PsblVertPtr cut1 = (mid1 && mid2)? mid1 : mid2;
PsblVertPtr cut2 = (mid2 && mid3)? mid3 : mid2;
if (cut1 && cut2)
{
vector<PsblVertPtr> chain = linkSplitter.chopLink(cut1, cut2, 1);
linkSplitter.insertPoints(leftShape, cut1, cut2, chain);
linkSplitter.insertPoints(rightShape, cut1, cut2, chain);
}
linkSplitter.addConvexShape(leftShape, leftMeshBuf, -offset/2);
linkSplitter.addConvexShape(rightShape, rightMeshBuf, offset/2);
// Add any edges of the left shape that lie along the border.
linkSplitter.addEdgeLinks(leftShape, leftEdgeLinks);
// Right side polys that share a border with left side ones will have
// opposite winding order. In order for set_intersection to consider them
// as matches, we'll store the right side links in reversed order.
std::reverse(rightShape.begin(), rightShape.end());
linkSplitter.addEdgeLinks(rightShape, rightEdgeLinks);
}
SMesh* leftMesh = new SMesh();
leftMeshBuf->recalculateBoundingBox();
leftMeshBuf->setHardwareMappingHint(EHM_STATIC);
leftMesh->addMeshBuffer(leftMeshBuf);
leftMesh->recalculateBoundingBox();
leftMeshBuf->drop(); // we drop the buf, mesh obj has it now
SMesh* rightMesh = new SMesh();
rightMeshBuf->recalculateBoundingBox();
rightMeshBuf->setHardwareMappingHint(EHM_STATIC);
rightMesh->addMeshBuffer(rightMeshBuf);
rightMesh->recalculateBoundingBox();
rightMeshBuf->drop(); // we drop the buf, mesh obj has it now
SMesh* middleMesh = NULL;
if (zInsert > 0)
{
set<pair<PsblVertPtr,PsblVertPtr>> result;
std::set_intersection(
leftEdgeLinks.begin(), leftEdgeLinks.end(),
rightEdgeLinks.begin(), rightEdgeLinks.end(),
std::inserter(result, result.begin())
);
size_t debugsize = result.size();
if (result.size() > 0)
{
SMeshBuffer* middleMeshBuf = new SMeshBuffer();
vector<PsblVertPtr> shape(4);
for (auto it=result.begin(); it!=result.end(); ++it)
{
shape[0] = it->second;
shape[1] = it->first;
shape[2] = it->first->duplicate(offset);
shape[3] = it->second->duplicate(offset);
linkSplitter.addConvexShape(shape, middleMeshBuf, -offset/2);
}
middleMesh = new SMesh();
middleMeshBuf->recalculateBoundingBox();
middleMeshBuf->setHardwareMappingHint(EHM_STATIC);
middleMesh->addMeshBuffer(middleMeshBuf);
middleMesh->recalculateBoundingBox();
middleMeshBuf->drop(); // we drop the buf, mesh obj has it now
}
}
return SplitMeshResult {leftMesh, middleMesh, rightMesh};
}
示例15: createTerrainMesh
//.........这里部分代码省略.........
blockSize.Width = hMapSize.Width - processed.X;
if (processed.Y + blockSize.Height > hMapSize.Height)
blockSize.Height = hMapSize.Height - processed.Y;
SMeshBuffer* buffer = new SMeshBuffer();
s32 x,y;
// add vertices of vertex block
for (y=0; y<blockSize.Height; ++y)
for (x=0; x<blockSize.Width; ++x)
{
video::SColor clr = heightmap->getPixel(x+processed.X, y+processed.Y);
f32 height = ((clr.getRed() + clr.getGreen() + clr.getBlue()) / 3.0f)/255.0f * maxHeight;
vtx.Pos.set((f32)(x+processed.X) * stretchSize.Width,
height, (f32)(y+processed.Y) * stretchSize.Height);
vtx.TCoords.set((f32)(x+0.5f) / ((f32)blockSize.Width),
(f32)(y+0.5f) / ((f32)blockSize.Height));
buffer->Vertices.push_back(vtx);
}
// add indices of vertex block
for (y=0; y<blockSize.Height-1; ++y)
for (x=0; x<blockSize.Width-1; ++x)
{
s32 c = (y*blockSize.Width) + x;
buffer->Indices.push_back(c);
buffer->Indices.push_back(c + blockSize.Width);
buffer->Indices.push_back(c + 1);
buffer->Indices.push_back(c + 1);
buffer->Indices.push_back(c + blockSize.Width);
buffer->Indices.push_back(c + 1 + blockSize.Width);
}
// recalculate normals
for (s32 i=0; i<(s32)buffer->Indices.size(); i+=3)
{
core::plane3d<f32> p(
buffer->Vertices[buffer->Indices[i+0]].Pos,
buffer->Vertices[buffer->Indices[i+1]].Pos,
buffer->Vertices[buffer->Indices[i+2]].Pos);
p.Normal.normalize();
buffer->Vertices[buffer->Indices[i+0]].Normal = p.Normal;
buffer->Vertices[buffer->Indices[i+1]].Normal = p.Normal;
buffer->Vertices[buffer->Indices[i+2]].Normal = p.Normal;
}
if (buffer->Vertices.size())
{
// create texture for this block
video::IImage* img = new video::CImage(texture,
core::position2d<s32>((s32)(processed.X*thRel.X), (s32)(processed.Y*thRel.Y)),
core::dimension2d<s32>((s32)(blockSize.Width*thRel.X), (s32)(blockSize.Height*thRel.Y)));
sprintf(textureName, "terrain%d_%d", tm, mesh->getMeshBufferCount());
material.Texture1 = driver->addTexture(textureName, img);
if (material.Texture1)
{
sprintf(tmp, "Generated terrain texture (%dx%d): %s",
material.Texture1->getSize().Width,
material.Texture1->getSize().Height,
textureName);
os::Printer::log(tmp);
}
else
os::Printer::log("Could not create terrain texture.", textureName, ELL_ERROR);
buffer->Material = material;
img->drop();
}
buffer->recalculateBoundingBox();
mesh->addMeshBuffer(buffer);
buffer->drop();
// keep on processing
processed.X += maxVtxBlockSize.Width - borderSkip;
}
// keep on processing
processed.X = 0;
processed.Y += maxVtxBlockSize.Height - borderSkip;
}
SAnimatedMesh* animatedMesh = new SAnimatedMesh();
mesh->recalculateBoundingBox();
animatedMesh->addMesh(mesh);
animatedMesh->recalculateBoundingBox();
mesh->drop();
return animatedMesh;
}