本文整理汇总了C++中SMesh::getMeshBuffer方法的典型用法代码示例。如果您正苦于以下问题:C++ SMesh::getMeshBuffer方法的具体用法?C++ SMesh::getMeshBuffer怎么用?C++ SMesh::getMeshBuffer使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SMesh
的用法示例。
在下文中一共展示了SMesh::getMeshBuffer方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: init
void init(const HeightMap &hm, f32 scale, colour_func cf, IVideoDriver *driver)
{
Scale = scale;
const u32 mp = driver -> getMaximalPrimitiveCount();
Width = hm.width();
Height = hm.height();
const u32 sw = mp / (6 * Height); // the width of each piece
u32 i=0;
for(u32 y0 = 0; y0 < Height; y0 += sw)
{
u16 y1 = y0 + sw;
if (y1 >= Height)
y1 = Height - 1; // the last one might be narrower
addstrip(hm, cf, y0, y1, i);
++i;
}
if (i<Mesh->getMeshBufferCount())
{
// clear the rest
for (u32 j=i; j<Mesh->getMeshBufferCount(); ++j)
{
Mesh->getMeshBuffer(j)->drop();
}
Mesh->MeshBuffers.erase(i,Mesh->getMeshBufferCount()-i);
}
Mesh->recalculateBoundingBox();
}
示例2: createMesh
//! Creates/loads an animated mesh from the file.
IAnimatedMesh* CSMFMeshFileLoader::createMesh(io::IReadFile* file)
{
// create empty mesh
SMesh *mesh = new SMesh();
// load file
u16 version;
u8 flags;
s32 limbCount;
s32 i;
io::BinaryFile::read(file, version);
io::BinaryFile::read(file, flags);
io::BinaryFile::read(file, limbCount);
// load mesh data
core::matrix4 identity;
for (i=0; i < limbCount; ++i)
loadLimb(file, mesh, identity);
// recalculate buffer bounding boxes
for (i=0; i < (s32)mesh->getMeshBufferCount(); ++i)
mesh->getMeshBuffer(i)->recalculateBoundingBox();
mesh->recalculateBoundingBox();
SAnimatedMesh *am = new SAnimatedMesh();
am->addMesh(mesh);
mesh->drop();
am->recalculateBoundingBox();
return am;
}
示例3: init
void init(const HeightMap &hm, f32 scale, colour_func cf, IVideoDriver *driver)
{
Scale = scale;
const u32 mp = driver -> getMaximalPrimitiveCount();
Width = hm.width();
Height = hm.height();
const u32 sw = mp / (6 * Height); // the width of each piece
u32 i=0;
for(u32 y0 = 0; y0 < Height; y0 += sw)
{
u16 y1 = y0 + sw;
if (y1 >= Height)
y1 = Height - 1; // the last one might be narrower
addstrip(hm, cf, y0, y1, i);
++i;
}
if (i<Mesh->getMeshBufferCount())
{
// clear the rest
for (u32 j=i; j<Mesh->getMeshBufferCount(); ++j)
{
Mesh->getMeshBuffer(j)->drop();
}
Mesh->MeshBuffers.erase(i,Mesh->getMeshBufferCount()-i);
}
// set dirty flag to make sure that hardware copies of this
// buffer are also updated, see IMesh::setHardwareMappingHint
Mesh->setDirty();
Mesh->recalculateBoundingBox();
}
示例4: addstrip
void addstrip(const HeightMap &hm, colour_func cf, u16 y0, u16 y1, u32 bufNum)
{
SMeshBuffer *buf = 0;
if (bufNum<Mesh->getMeshBufferCount())
{
buf = (SMeshBuffer*)Mesh->getMeshBuffer(bufNum);
}
else
{
// create new buffer
buf = new SMeshBuffer();
Mesh->addMeshBuffer(buf);
// to simplify things we drop here but continue using buf
buf->drop();
}
buf->Vertices.set_used((1 + y1 - y0) * Width);
u32 i=0;
for (u16 y = y0; y <= y1; ++y)
{
for (u16 x = 0; x < Width; ++x)
{
const f32 z = hm.get(x, y);
const f32 xx = (f32)x/(f32)Width;
const f32 yy = (f32)y/(f32)Height;
S3DVertex& v = buf->Vertices[i++];
v.Pos.set(x, Scale * z, y);
v.Normal.set(hm.getnormal(x, y, Scale));
v.Color=cf(xx, yy, z);
v.TCoords.set(xx, yy);
}
}
buf->Indices.set_used(6 * (Width - 1) * (y1 - y0));
i=0;
for(u16 y = y0; y < y1; ++y)
{
for(u16 x = 0; x < Width - 1; ++x)
{
const u16 n = (y-y0) * Width + x;
buf->Indices[i]=n;
buf->Indices[++i]=n + Width;
buf->Indices[++i]=n + Width + 1;
buf->Indices[++i]=n + Width + 1;
buf->Indices[++i]=n + 1;
buf->Indices[++i]=n;
++i;
}
}
buf->recalculateBoundingBox();
}
示例5: createMesh
//.........这里部分代码省略.........
u16 attrib=0;
core::stringc token;
token.reserve(32);
while (file->getPos() < filesize)
{
if (!binary)
{
if (getNextToken(file, token) != "facet")
{
if (token=="endsolid")
break;
mesh->drop();
return 0;
}
if (getNextToken(file, token) != "normal")
{
mesh->drop();
return 0;
}
}
getNextVector(file, normal, binary);
if (!binary)
{
if (getNextToken(file, token) != "outer")
{
mesh->drop();
return 0;
}
if (getNextToken(file, token) != "loop")
{
mesh->drop();
return 0;
}
}
for (u32 i=0; i<3; ++i)
{
if (!binary)
{
if (getNextToken(file, token) != "vertex")
{
mesh->drop();
return 0;
}
}
getNextVector(file, vertex[i], binary);
}
if (!binary)
{
if (getNextToken(file, token) != "endloop")
{
mesh->drop();
return 0;
}
if (getNextToken(file, token) != "endfacet")
{
mesh->drop();
return 0;
}
}
else
{
file->read(&attrib, 2);
#ifdef __BIG_ENDIAN__
attrib = os::Byteswap::byteswap(attrib);
#endif
}
SMeshBuffer* mb = reinterpret_cast<SMeshBuffer*>(mesh->getMeshBuffer(mesh->getMeshBufferCount()-1));
u32 vCount = mb->getVertexCount();
video::SColor color(0xffffffff);
if (attrib & 0x8000)
color = video::A1R5G5B5toA8R8G8B8(attrib);
if (normal==core::vector3df())
normal=core::plane3df(vertex[2],vertex[1],vertex[0]).Normal;
mb->Vertices.push_back(video::S3DVertex(vertex[2],normal,color, core::vector2df()));
mb->Vertices.push_back(video::S3DVertex(vertex[1],normal,color, core::vector2df()));
mb->Vertices.push_back(video::S3DVertex(vertex[0],normal,color, core::vector2df()));
mb->Indices.push_back(vCount);
mb->Indices.push_back(vCount+1);
mb->Indices.push_back(vCount+2);
} // end while (file->getPos() < filesize)
mesh->getMeshBuffer(0)->recalculateBoundingBox();
// Create the Animated mesh if there's anything in the mesh
SAnimatedMesh* pAM = 0;
if ( 0 != mesh->getMeshBufferCount() )
{
mesh->recalculateBoundingBox();
pAM = new SAnimatedMesh();
pAM->Type = EAMT_OBJ;
pAM->addMesh(mesh);
pAM->recalculateBoundingBox();
}
mesh->drop();
return pAM;
}
示例6: axis
GLlink(ISceneNode *i_parent, ISceneManager *i_mgr, s32 i_id,
const LinkInfo &i_li, BodyInfo_var i_binfo) :
ISceneNode(i_parent, i_mgr, i_id),
m_jointId(i_li.jointId) {
setAutomaticCulling(scene::EAC_OFF);
setPosition(vector3df( i_li.translation[0],
-i_li.translation[1],
i_li.translation[2]));
Vector3 axis(i_li.rotation[0],
i_li.rotation[1],
i_li.rotation[2]);
Matrix33 R;
hrp::calcRodrigues(R, axis, i_li.rotation[3]);
Vector3 rpy(rpyFromRot(R));
//std::cout << "rpy:" << rpy << std::endl;
setRotation(vector3df(-180/M_PI*rpy[0],
180/M_PI*rpy[1],
-180/M_PI*rpy[2]));
m_axis << i_li.jointAxis[0], i_li.jointAxis[1], i_li.jointAxis[2];
ShapeInfoSequence_var sis = i_binfo->shapes();
AppearanceInfoSequence_var ais = i_binfo->appearances();
MaterialInfoSequence_var mis = i_binfo->materials();
TextureInfoSequence_var txs = i_binfo->textures();
const TransformedShapeIndexSequence& tsis = i_li.shapeIndices;
core::vector3df vertex;
core::vector3df normal;
for (unsigned int l=0; l<tsis.length(); l++) {
SMesh* mesh = new SMesh();
SMeshBuffer* meshBuffer = new SMeshBuffer();
mesh->addMeshBuffer(meshBuffer);
meshBuffer->drop();
const TransformedShapeIndex &tsi = tsis[l];
short index = tsi.shapeIndex;
ShapeInfo& si = sis[index];
const float *vertices = si.vertices.get_buffer();
const LongSequence& triangles = si.triangles;
const AppearanceInfo& ai = ais[si.appearanceIndex];
const float *normals = ai.normals.get_buffer();
//std::cout << "length of normals = " << ai.normals.length() << std::endl;
const LongSequence& normalIndices = ai.normalIndices;
//std::cout << "length of normalIndices = " << normalIndices.length() << std::endl;
const int numTriangles = triangles.length() / 3;
//std::cout << "numTriangles = " << numTriangles << std::endl;
video::SColor color(0xffffffff);
if (ai.colors.length()) {
color.set(0xff,
0xff*ai.colors[0],
0xff*ai.colors[1],
0xff*ai.colors[2]);
} else if (ai.materialIndex >= 0) {
const MaterialInfo& mi = mis[ai.materialIndex];
color.set(0xff,
0xff*mi.diffuseColor[0],
0xff*mi.diffuseColor[1],
0xff*mi.diffuseColor[2]);
} else {
std::cout << "no material" << std::endl;
}
SMeshBuffer* mb = reinterpret_cast<SMeshBuffer*>(mesh->getMeshBuffer(mesh->getMeshBufferCount()-1));
u32 vCount = mb->getVertexCount();
const DblArray12& tfm = tsi.transformMatrix;
CMatrix4<f32> cmat;
for (int i=0; i<3; i++) {
for (int j=0; j<4; j++) {
cmat[j*4+i] = tfm[i*4+j];
}
}
cmat[3] = cmat[7] = cmat[11] = 0.0;
cmat[15] = 1.0;
vector3df pos = cmat.getTranslation();
pos.Y *= -1;
vector3df rpy = cmat.getRotationDegrees();
rpy.X *= -1;
rpy.Z *= -1;
vector3df scale = cmat.getScale();
const float *textureCoordinate = NULL;
if (ai.textureIndex >= 0) {
textureCoordinate = ai.textureCoordinate.get_buffer();
//std::cout << "length of textureCoordinate:" << ai.textureCoordinate.length() << std::endl;
//std::cout << "length of vertices:" << si.vertices.length() << std::endl;
}
for(int j=0; j < numTriangles; ++j) {
if (!ai.normalPerVertex) {
int p;
if (normalIndices.length() == 0) {
//.........这里部分代码省略.........
示例7: createMesh
//! creates/loads an animated mesh from the file.
//! \return Pointer to the created mesh. Returns 0 if loading failed.
//! If you no longer need the mesh, you should call IAnimatedMesh::drop().
//! See IReferenceCounted::drop() for more information.
IAnimatedMesh* COCTLoader::createMesh(io::IReadFile* file)
{
if (!file)
return 0;
octHeader header;
file->read(&header, sizeof(octHeader));
octVert * verts = new octVert[header.numVerts];
octFace * faces = new octFace[header.numFaces];
octTexture * textures = new octTexture[header.numTextures];
octLightmap * lightmaps = new octLightmap[header.numLightmaps];
octLight * lights = new octLight[header.numLights];
file->read(verts, sizeof(octVert) * header.numVerts);
file->read(faces, sizeof(octFace) * header.numFaces);
//TODO: Make sure id is in the legal range for Textures and Lightmaps
u32 i;
for (i = 0; i < header.numTextures; i++) {
octTexture t;
file->read(&t, sizeof(octTexture));
textures[t.id] = t;
}
for (i = 0; i < header.numLightmaps; i++) {
octLightmap t;
file->read(&t, sizeof(octLightmap));
lightmaps[t.id] = t;
}
file->read(lights, sizeof(octLight) * header.numLights);
//TODO: Now read in my extended OCT header (flexible lightmaps and vertex normals)
// This is the method Nikolaus Gebhardt used in the Q3 loader -- create a
// meshbuffer for every possible combination of lightmap and texture including
// a "null" texture and "null" lightmap. Ones that end up with nothing in them
// will be removed later.
SMesh * Mesh = new SMesh();
for (i=0; i<(header.numTextures+1) * (header.numLightmaps+1); ++i)
{
scene::SMeshBufferLightMap* buffer = new scene::SMeshBufferLightMap();
buffer->Material.MaterialType = video::EMT_LIGHTMAP;
buffer->Material.Lighting = false;
Mesh->addMeshBuffer(buffer);
buffer->drop();
}
// Build the mesh buffers
for (i = 0; i < header.numFaces; i++)
{
if (faces[i].numVerts < 3)
continue;
const f32* const a = verts[faces[i].firstVert].pos;
const f32* const b = verts[faces[i].firstVert+1].pos;
const f32* const c = verts[faces[i].firstVert+2].pos;
const core::vector3df normal =
core::plane3df(core::vector3df(a[0],a[1],a[2]), core::vector3df(b[0],c[1],c[2]), core::vector3df(c[0],c[1],c[2])).Normal;
const u32 textureID = core::min_(s32(faces[i].textureID), s32(header.numTextures - 1)) + 1;
const u32 lightmapID = core::min_(s32(faces[i].lightmapID),s32(header.numLightmaps - 1)) + 1;
SMeshBufferLightMap * meshBuffer = (SMeshBufferLightMap*)Mesh->getMeshBuffer(lightmapID * (header.numTextures + 1) + textureID);
const u32 base = meshBuffer->Vertices.size();
// Add this face's verts
u32 v;
for (v = 0; v < faces[i].numVerts; ++v)
{
octVert * vv = &verts[faces[i].firstVert + v];
video::S3DVertex2TCoords vert;
vert.Pos.set(vv->pos[0], vv->pos[1], vv->pos[2]);
vert.Color = video::SColor(0,255,255,255);
vert.Normal.set(normal);
if (textureID == 0)
{
// No texture -- just a lightmap. Thus, use lightmap coords for texture 1.
// (the actual texture will be swapped later)
vert.TCoords.set(vv->lc[0], vv->lc[1]);
}
else
{
vert.TCoords.set(vv->tc[0], vv->tc[1]);
vert.TCoords2.set(vv->lc[0], vv->lc[1]);
}
meshBuffer->Vertices.push_back(vert);
}
// Now add the indices
// This weird loop turns convex polygons into triangle strips.
// I do it this way instead of a simple fan because it usually looks a lot better in wireframe, for example.
//.........这里部分代码省略.........
示例8: drop
/**Creates/loads an animated mesh from the file.
\return Pointer to the created mesh. Returns 0 if loading failed.
If you no longer need the mesh, you should call IAnimatedMesh::drop().
See IReferenceCounted::drop() for more information.*/
IAnimatedMesh* CDMFLoader::createMesh(io::IReadFile* file)
{
if (!file)
return 0;
video::IVideoDriver* driver = SceneMgr->getVideoDriver();
//Load stringlist
StringList dmfRawFile;
LoadFromFile(file, dmfRawFile);
if (dmfRawFile.size()==0)
return 0;
SMesh * mesh = new SMesh();
u32 i;
dmfHeader header;
//load header
core::array<dmfMaterial> materiali;
if (GetDMFHeader(dmfRawFile, header))
{
//let's set ambient light
SceneMgr->setAmbientLight(header.dmfAmbient);
//let's create the correct number of materials, vertices and faces
dmfVert *verts=new dmfVert[header.numVertices];
dmfFace *faces=new dmfFace[header.numFaces];
//let's get the materials
#ifdef _IRR_DMF_DEBUG_
os::Printer::log("Loading materials", core::stringc(header.numMaterials).c_str());
#endif
GetDMFMaterials(dmfRawFile, materiali, header.numMaterials);
//let's get vertices and faces
#ifdef _IRR_DMF_DEBUG_
os::Printer::log("Loading geometry");
#endif
GetDMFVerticesFaces(dmfRawFile, verts, faces);
//create a meshbuffer for each material, then we'll remove empty ones
#ifdef _IRR_DMF_DEBUG_
os::Printer::log("Creating meshbuffers.");
#endif
for (i=0; i<header.numMaterials; i++)
{
//create a new SMeshBufferLightMap for each material
SSkinMeshBuffer* buffer = new SSkinMeshBuffer();
buffer->Material.MaterialType = video::EMT_LIGHTMAP_LIGHTING;
buffer->Material.Wireframe = false;
buffer->Material.Lighting = true;
mesh->addMeshBuffer(buffer);
buffer->drop();
}
// Build the mesh buffers
#ifdef _IRR_DMF_DEBUG_
os::Printer::log("Adding geometry to mesh.");
#endif
for (i = 0; i < header.numFaces; i++)
{
#ifdef _IRR_DMF_DEBUG_
os::Printer::log("Polygon with #vertices", core::stringc(faces[i].numVerts).c_str());
#endif
if (faces[i].numVerts < 3)
continue;
const core::vector3df normal =
core::triangle3df(verts[faces[i].firstVert].pos,
verts[faces[i].firstVert+1].pos,
verts[faces[i].firstVert+2].pos).getNormal().normalize();
SSkinMeshBuffer* meshBuffer = (SSkinMeshBuffer*)mesh->getMeshBuffer(
faces[i].materialID);
const bool use2TCoords = meshBuffer->Vertices_2TCoords.size() ||
materiali[faces[i].materialID].lightmapName.size();
if (use2TCoords && meshBuffer->Vertices_Standard.size())
meshBuffer->convertTo2TCoords();
const u32 base = meshBuffer->Vertices_2TCoords.size()?meshBuffer->Vertices_2TCoords.size():meshBuffer->Vertices_Standard.size();
// Add this face's verts
if (use2TCoords)
{
// make sure we have the proper type set
meshBuffer->VertexType=video::EVT_2TCOORDS;
for (u32 v = 0; v < faces[i].numVerts; v++)
{
const dmfVert& vv = verts[faces[i].firstVert + v];
video::S3DVertex2TCoords vert(vv.pos,
normal, video::SColor(255,255,255,255), vv.tc, vv.lc);
if (materiali[faces[i].materialID].textureBlend==4 &&
SceneMgr->getParameters()->getAttributeAsBool(DMF_FLIP_ALPHA_TEXTURES))
{
//.........这里部分代码省略.........
示例9: createMesh
//! creates/loads an animated mesh from the file.
//! \return Pointer to the created mesh. Returns 0 if loading failed.
//! If you no longer need the mesh, you should call IAnimatedMesh::drop().
//! See IReferenceCounted::drop() for more information.
IAnimatedMesh* COCTLoader::createMesh(io::IReadFile* file)
{
if (!file)
return 0;
octHeader header;
file->read(&header, sizeof(octHeader));
octVert * verts = new octVert[header.numVerts];
octFace * faces = new octFace[header.numFaces];
octTexture * textures = new octTexture[header.numTextures];
octLightmap * lightmaps = new octLightmap[header.numLightmaps];
octLight * lights = new octLight[header.numLights];
file->read(verts, sizeof(octVert) * header.numVerts);
file->read(faces, sizeof(octFace) * header.numFaces);
//TODO: Make sure id is in the legal range for Textures and Lightmaps
u32 i;
for (i = 0; i < header.numTextures; i++) {
octTexture t;
file->read(&t, sizeof(octTexture));
textures[t.id] = t;
}
for (i = 0; i < header.numLightmaps; i++) {
octLightmap t;
file->read(&t, sizeof(octLightmap));
lightmaps[t.id] = t;
}
file->read(lights, sizeof(octLight) * header.numLights);
//TODO: Now read in my extended OCT header (flexible lightmaps and vertex normals)
// This is the method Nikolaus Gebhardt used in the Q3 loader -- create a
// meshbuffer for every possible combination of lightmap and texture including
// a "null" texture and "null" lightmap. Ones that end up with nothing in them
// will be removed later.
SMesh * Mesh = new SMesh();
for (i=0; i<(header.numTextures+1) * (header.numLightmaps+1); ++i)
{
scene::SMeshBufferLightMap* buffer = new scene::SMeshBufferLightMap();
buffer->Material.MaterialType = video::EMT_LIGHTMAP;
buffer->Material.Lighting = false;
Mesh->addMeshBuffer(buffer);
buffer->drop();
}
// Build the mesh buffers
for (i = 0; i < header.numFaces; i++)
{
if (faces[i].numVerts < 3)
continue;
const core::vector3df normal =
GetFaceNormal(verts[faces[i].firstVert].pos,
verts[faces[i].firstVert+1].pos,
verts[faces[i].firstVert+2].pos);
const u32 textureID = core::min_(s32(faces[i].textureID), s32(header.numTextures - 1)) + 1;
const u32 lightmapID = core::min_(s32(faces[i].lightmapID),s32(header.numLightmaps - 1)) + 1;
SMeshBufferLightMap * meshBuffer = (SMeshBufferLightMap*)Mesh->getMeshBuffer(lightmapID * (header.numTextures + 1) + textureID);
const u32 base = meshBuffer->Vertices.size();
// Add this face's verts
u32 v;
for (v = 0; v < faces[i].numVerts; ++v)
{
octVert * vv = &verts[faces[i].firstVert + v];
video::S3DVertex2TCoords vert;
vert.Pos.set(vv->pos[0], vv->pos[1], vv->pos[2]);
vert.Color = video::SColor(0,255,255,255);
vert.Normal.set(normal);
if (textureID == 0)
{
// No texture -- just a lightmap. Thus, use lightmap coords for texture 1.
// (the actual texture will be swapped later)
vert.TCoords.set(vv->lc[0], vv->lc[1]);
}
else
{
vert.TCoords.set(vv->tc[0], vv->tc[1]);
vert.TCoords2.set(vv->lc[0], vv->lc[1]);
}
meshBuffer->Vertices.push_back(vert);
}
// Now add the indices
// This weird loop turns convex polygons into triangle strips.
// I do it this way instead of a simple fan because it usually looks a lot better in wireframe, for example.
u32 h = faces[i].numVerts - 1, l = 0, c; // High, Low, Center
//.........这里部分代码省略.........