本文整理汇总了C++中Polyline::length方法的典型用法代码示例。如果您正苦于以下问题:C++ Polyline::length方法的具体用法?C++ Polyline::length怎么用?C++ Polyline::length使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Polyline
的用法示例。
在下文中一共展示了Polyline::length方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: enabled
bool
GCode::needs_retraction(const Polyline &travel, ExtrusionRole role)
{
if (travel.length() < scale_(EXTRUDER_CONFIG(retract_before_travel))) {
// skip retraction if the move is shorter than the configured threshold
return false;
}
if (role == erSupportMaterial) {
const SupportLayer* support_layer = dynamic_cast<const SupportLayer*>(this->layer);
if (support_layer != NULL && support_layer->support_islands.contains(travel)) {
// skip retraction if this is a travel move inside a support material island
return false;
}
}
if (this->config.only_retract_when_crossing_perimeters && this->layer != NULL) {
if (this->config.fill_density.value > 0
&& this->layer->any_internal_region_slice_contains(travel)) {
/* skip retraction if travel is contained in an internal slice *and*
internal infill is enabled (so that stringing is entirely not visible) */
return false;
} else if (this->layer->any_bottom_region_slice_contains(travel)
&& this->layer->upper_layer != NULL
&& this->layer->upper_layer->slices.contains(travel)
&& (this->config.bottom_solid_layers.value >= 2 || this->config.fill_density.value > 0)) {
/* skip retraction if travel is contained in an *infilled* bottom slice
but only if it's also covered by an *infilled* upper layer's slice
so that it's not visible from above (a bottom surface might not have an
upper slice in case of a thin membrane) */
return false;
}
}
// retract if only_retract_when_crossing_perimeters is disabled or doesn't apply
return true;
}
示例2: BoundingBox
//.........这里部分代码省略.........
if (edge->is_infinite()) continue;
Polyline polyline;
polyline.points.push_back(Point( edge->vertex0()->x(), edge->vertex0()->y() ));
polyline.points.push_back(Point( edge->vertex1()->x(), edge->vertex1()->y() ));
polylines->push_back(polyline);
}
return;
}
*/
// collect valid edges (i.e. prune those not belonging to MAT)
// note: this keeps twins, so it contains twice the number of the valid edges
this->edges.clear();
for (VD::const_edge_iterator edge = this->vd.edges().begin(); edge != this->vd.edges().end(); ++edge) {
// if we only process segments representing closed loops, none if the
// infinite edges (if any) would be part of our MAT anyway
if (edge->is_secondary() || edge->is_infinite()) continue;
this->edges.insert(&*edge);
}
// count valid segments for each vertex
std::map< const VD::vertex_type*,std::set<const VD::edge_type*> > vertex_edges;
std::set<const VD::vertex_type*> entry_nodes;
for (VD::const_vertex_iterator vertex = this->vd.vertices().begin(); vertex != this->vd.vertices().end(); ++vertex) {
// get a reference to the list of valid edges originating from this vertex
std::set<const VD::edge_type*>& edges = vertex_edges[&*vertex];
// get one random edge originating from this vertex
const VD::edge_type* edge = vertex->incident_edge();
do {
if (this->edges.count(edge) > 0) // only count valid edges
edges.insert(edge);
edge = edge->rot_next(); // next edge originating from this vertex
} while (edge != vertex->incident_edge());
// if there's only one edge starting at this vertex then it's a leaf
size_t edge_count = edges.size();
if (edge_count == 1) {
entry_nodes.insert(&*vertex);
}
}
// prune recursively
while (!entry_nodes.empty()) {
// get a random entry node
const VD::vertex_type* v = *entry_nodes.begin();
// get edge starting from v
assert(!vertex_edges[v].empty());
const VD::edge_type* edge = *vertex_edges[v].begin();
if (!this->is_valid_edge(*edge)) {
// if edge is not valid, erase it from edge list
(void)this->edges.erase(edge);
(void)this->edges.erase(edge->twin());
// decrement edge counters for the affected nodes
const VD::vertex_type* v1 = edge->vertex1();
(void)vertex_edges[v].erase(edge);
(void)vertex_edges[v1].erase(edge->twin());
// also, check whether the end vertex is a new leaf
if (vertex_edges[v1].size() == 1) {
entry_nodes.insert(v1);
} else if (vertex_edges[v1].empty()) {
entry_nodes.erase(v1);
}
}
// remove node from the set to prevent it from being visited again
entry_nodes.erase(v);
}
// iterate through the valid edges to build polylines
while (!this->edges.empty()) {
const VD::edge_type& edge = **this->edges.begin();
// start a polyline
Polyline polyline;
polyline.points.push_back(Point( edge.vertex0()->x(), edge.vertex0()->y() ));
polyline.points.push_back(Point( edge.vertex1()->x(), edge.vertex1()->y() ));
// remove this edge and its twin from the available edges
(void)this->edges.erase(&edge);
(void)this->edges.erase(edge.twin());
// get next points
this->process_edge_neighbors(edge, &polyline.points);
// get previous points
Points pp;
this->process_edge_neighbors(*edge.twin(), &pp);
polyline.points.insert(polyline.points.begin(), pp.rbegin(), pp.rend());
// append polyline to result if it's not too small
if (polyline.length() > this->max_width)
polylines->push_back(polyline);
}
}