本文整理汇总了C++中Plug::direction方法的典型用法代码示例。如果您正苦于以下问题:C++ Plug::direction方法的具体用法?C++ Plug::direction怎么用?C++ Plug::direction使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Plug
的用法示例。
在下文中一共展示了Plug::direction方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: drop
bool DotNodeGadget::drop( const DragDropEvent &event )
{
if( dotNode()->inPlug<Plug>() )
{
// We've already got our plugs set up - StandardNodeGadget
// behaviour will take care of everything.
return false;
}
Plug *plug = runTimeCast<Plug>( event.data.get() );
if( !plug )
{
return false;
}
Gaffer::UndoScope undoEnabler( node()->ancestor<ScriptNode>() );
dotNode()->setup( plug );
if( plug->direction() == Plug::In )
{
plug->setInput( dotNode()->outPlug<Plug>() );
}
else
{
dotNode()->inPlug<Plug>()->setInput( plug );
}
return true;
}
示例2: updatePlug
void Expression::updatePlug( ValuePlug *parentPlug, size_t childIndex, ValuePlug *plug )
{
if( parentPlug->children().size() > childIndex )
{
// See if we can reuse the existing plug
Plug *existingChildPlug = parentPlug->getChild<Plug>( childIndex );
if(
( existingChildPlug->direction() == Plug::In && existingChildPlug->getInput<Plug>() == plug ) ||
( existingChildPlug->direction() == Plug::Out && plug->getInput<Plug>() == existingChildPlug )
)
{
return;
}
}
// Existing plug not OK, so we need to create one. First we must remove all
// plugs from childIndex onwards, so that when we add the new plug it gets
// the right index.
removeChildren( parentPlug, childIndex );
// Finally we can add the plug we need.
PlugPtr childPlug = plug->createCounterpart( "p0", parentPlug->direction() );
childPlug->setFlags( Plug::Dynamic, true );
parentPlug->addChild( childPlug );
if( childPlug->direction() == Plug::In )
{
childPlug->setInput( plug );
}
else
{
plug->setInput( childPlug );
}
}
示例3: insert
void BoxIO::insert( Box *box )
{
// Must take a copy of children because adding a child
// would invalidate our PlugIterator.
GraphComponent::ChildContainer children = box->children();
for( PlugIterator it( children ); !it.done(); ++it )
{
Plug *plug = it->get();
if( plug->direction() == Plug::In )
{
std::vector<Plug *> outputsNeedingBoxIn;
const Plug::OutputContainer &outputs = plug->outputs();
for( Plug::OutputContainer::const_iterator oIt = outputs.begin(), oeIt = outputs.end(); oIt != oeIt; ++oIt )
{
if( hasNodule( *oIt ) && !runTimeCast<BoxIO>( (*oIt)->node() ) )
{
outputsNeedingBoxIn.push_back( *oIt );
}
}
if( outputsNeedingBoxIn.empty() )
{
continue;
}
BoxInPtr boxIn = new BoxIn;
boxIn->namePlug()->setValue( plug->getName() );
boxIn->setup( plug );
box->addChild( boxIn );
boxIn->inPlugInternal()->setInput( plug );
for( std::vector<Plug *>::const_iterator oIt = outputsNeedingBoxIn.begin(), oeIt = outputsNeedingBoxIn.end(); oIt != oeIt; ++oIt )
{
(*oIt)->setInput( boxIn->plug() );
}
}
else
{
// Output plug
Plug *input = plug->getInput();
if( !input || !hasNodule( input ) || runTimeCast<BoxIO>( input->node() ) )
{
continue;
}
BoxOutPtr boxOut = new BoxOut;
boxOut->namePlug()->setValue( plug->getName() );
boxOut->setup( plug );
box->addChild( boxOut );
boxOut->plug()->setInput( input );
plug->setInput( boxOut->outPlugInternal() );
}
}
}
示例4: postTasks
void TaskNode::postTasks( const Context *context, Tasks &tasks ) const
{
for( PlugIterator cIt( postTasksPlug() ); !cIt.done(); ++cIt )
{
Plug *source = (*cIt)->source();
if( source != *cIt && source->direction() == Plug::Out )
{
if( TaskNodePtr n = runTimeCast<TaskNode>( source->node() ) )
{
tasks.push_back( Task( n, context ) );
}
}
}
}
示例5: plugDirtied
void PathFilter::plugDirtied( const Gaffer::Plug *plug )
{
if( plug == pathsPlug() )
{
//\todo: share this logic with Switch::variesWithContext()
Plug* sourcePlug = pathsPlug()->source();
if( sourcePlug->direction() == Plug::Out && IECore::runTimeCast<const ComputeNode>( sourcePlug->node() ) )
{
// pathsPlug() is receiving data from a plug whose value is context varying, meaning
// we need to use the intermediate pathMatcherPlug() in computeMatch() instead:
m_pathMatcher = nullptr;
}
else
{
// pathsPlug() value is not context varying, meaning we can save on graph evaluations
// by just precomputing it here and directly using it in computeMatch():
ConstStringVectorDataPtr paths = pathsPlug()->getValue();
m_pathMatcher = new PathMatcherData;
m_pathMatcher->writable().init( paths->readable().begin(), paths->readable().end() );
}
}
}
示例6: load
void Reference::load( const std::string &fileName )
{
ScriptNode *script = scriptNode();
if( !script )
{
throw IECore::Exception( "Reference::load called without ScriptNode" );
}
// if we're doing a reload, then we want to maintain any values and
// connections that our external plugs might have. but we also need to
// get those existing plugs out of the way during the load, so that the
// incoming plugs don't get renamed.
std::map<std::string, Plug *> previousPlugs;
for( PlugIterator it( this ); it != it.end(); ++it )
{
Plug *plug = it->get();
if( isReferencePlug( plug ) )
{
previousPlugs[plug->getName()] = plug;
plug->setName( "__tmp__" + plug->getName().string() );
}
}
for( PlugIterator it( userPlug() ); it != it.end(); ++it )
{
Plug *plug = it->get();
previousPlugs[plug->relativeName( this )] = plug;
plug->setName( "__tmp__" + plug->getName().string() );
}
// if we're doing a reload, then we also need to delete all our child
// nodes to make way for the incoming nodes.
int i = (int)(children().size()) - 1;
while( i >= 0 )
{
if( Node *node = getChild<Node>( i ) )
{
removeChild( node );
}
i--;
}
// load the reference. we use continueOnError=true to get everything possible
// loaded, but if any errors do occur we throw an exception at the end of this
// function. this means that the caller is still notified of errors via the
// exception mechanism, but we leave ourselves in the best state possible for
// the case where ScriptNode::load( continueOnError = true ) will ignore the
// exception that we throw.
const bool errors = script->executeFile( fileName, this, /* continueOnError = */ true );
fileNamePlug()->setValue( fileName );
// transfer connections and values from the old plugs onto the corresponding new ones.
for( std::map<std::string, Plug *>::const_iterator it = previousPlugs.begin(), eIt = previousPlugs.end(); it != eIt; ++it )
{
Plug *oldPlug = it->second;
Plug *newPlug = descendant<Plug>( it->first );
if( newPlug )
{
try
{
if( newPlug->direction() == Plug::In && oldPlug->direction() == Plug::In )
{
if( Plug *oldInput = oldPlug->getInput<Plug>() )
{
newPlug->setInput( oldInput );
}
else
{
ValuePlug *oldValuePlug = runTimeCast<ValuePlug>( oldPlug );
ValuePlug *newValuePlug = runTimeCast<ValuePlug>( newPlug );
if( oldValuePlug && newValuePlug )
{
newValuePlug->setFrom( oldValuePlug );
}
}
}
else if( newPlug->direction() == Plug::Out && oldPlug->direction() == Plug::Out )
{
for( Plug::OutputContainer::const_iterator oIt = oldPlug->outputs().begin(), oeIt = oldPlug->outputs().end(); oIt != oeIt; )
{
Plug *outputPlug = *oIt;
++oIt; // increment now because the setInput() call invalidates our iterator.
outputPlug->setInput( newPlug );
}
}
}
catch( const std::exception &e )
{
msg(
Msg::Warning,
boost::str( boost::format( "Loading \"%s\" onto \"%s\"" ) % fileName % getName().c_str() ),
e.what()
);
}
}
//.........这里部分代码省略.........
示例7: create
BoxPtr Box::create( Node *parent, const Set *childNodes )
{
BoxPtr result = new Box;
parent->addChild( result );
// it's pretty natural to call this function passing childNodes == ScriptNode::selection().
// unfortunately nodes will be removed from the selection as we reparent
// them, so we have to make a copy of childNodes so our iteration isn't befuddled by
// the changing contents. we can use this opportunity to weed out anything in childNodes
// which isn't a direct child of parent though.
StandardSetPtr verifiedChildNodes = new StandardSet();
for( NodeIterator nodeIt( parent ); nodeIt != nodeIt.end(); nodeIt++ )
{
if( childNodes->contains( nodeIt->get() ) )
{
verifiedChildNodes->add( *nodeIt );
}
}
// when a node we're putting in the box has connections to
// a node remaining outside, we need to reroute the connection
// via an intermediate plug on the box. this mapping maps input
// plugs (be they internal or external) to intermediate input plugs.
typedef std::pair<const Plug *, Plug *> PlugPair;
typedef std::map<const Plug *, Plug *> PlugMap;
PlugMap plugMap;
for( size_t i = 0, e = verifiedChildNodes->size(); i < e; i++ )
{
Node *childNode = static_cast<Node *>( verifiedChildNodes->member( i ) );
// reroute any connections to external nodes
for( RecursivePlugIterator plugIt( childNode ); plugIt != plugIt.end(); plugIt++ )
{
Plug *plug = plugIt->get();
if( plug->direction() == Plug::In )
{
Plug *input = plug->getInput<Plug>();
if( input && !verifiedChildNodes->contains( input->node() ) )
{
PlugMap::const_iterator mapIt = plugMap.find( input );
if( mapIt == plugMap.end() )
{
PlugPtr intermediateInput = plug->createCounterpart( result->promotedCounterpartName( plug ), Plug::In );
// we want intermediate inputs to appear on the same side of the node as the
// equivalent internal plug, so we copy the relevant metadata over.
copyMetadata( plug, intermediateInput.get() );
intermediateInput->setFlags( Plug::Dynamic, true );
result->addChild( intermediateInput );
intermediateInput->setInput( input );
mapIt = plugMap.insert( PlugPair( input, intermediateInput.get() ) ).first;
}
plug->setInput( mapIt->second );
plugIt.prune();
}
}
else
{
// take a copy of the outputs, because we might be modifying the
// original as we iterate.
Plug::OutputContainer outputs = plug->outputs();
if( !outputs.empty() )
{
typedef Plug::OutputContainer::const_iterator OutputIterator;
for( OutputIterator oIt = outputs.begin(), eIt = outputs.end(); oIt != eIt; oIt++ )
{
Plug *output = *oIt;
const Node *outputNode = output->node();
if( outputNode->parent<Node>() == parent && !verifiedChildNodes->contains( outputNode ) )
{
PlugMap::const_iterator mapIt = plugMap.find( plug );
if( mapIt == plugMap.end() )
{
PlugPtr intermediateOutput = plug->createCounterpart( result->promotedCounterpartName( plug ), Plug::Out );
copyMetadata( plug, intermediateOutput.get() );
intermediateOutput->setFlags( Plug::Dynamic, true );
result->addChild( intermediateOutput );
intermediateOutput->setInput( plug );
mapIt = plugMap.insert( PlugPair( plug, intermediateOutput.get() ) ).first;
}
output->setInput( mapIt->second );
}
}
plugIt.prune();
}
}
}
// reparent the child under the Box. it's important that we do this after adding the intermediate
// input plugs, so that when they are serialised and reloaded, the inputs to the box are set before
// the inputs to the nodes inside the box - see GafferSceneTest.ShaderAssignmentTest.testAssignShaderFromOutsideBox
// for a test case highlighting this necessity.
result->addChild( childNode );
}
return result;
}