当前位置: 首页>>代码示例>>C++>>正文


C++ PiecewisePolynomial::value方法代码示例

本文整理汇总了C++中PiecewisePolynomial::value方法的典型用法代码示例。如果您正苦于以下问题:C++ PiecewisePolynomial::value方法的具体用法?C++ PiecewisePolynomial::value怎么用?C++ PiecewisePolynomial::value使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在PiecewisePolynomial的用法示例。


在下文中一共展示了PiecewisePolynomial::value方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: main

int main(int argc, char **argv) {
    int num_segments = 3;

    vector<double> segment_times = generateSegmentTimes(num_segments);

    double x0 = uniform(generator);
    double xd0 = uniform(generator);

    double xf = uniform(generator);
    double xdf = uniform(generator);

    double x1 = uniform(generator);
    double x2 = uniform(generator);


    PiecewisePolynomial<double> result = twoWaypointCubicSpline(segment_times, x0, xd0, xf, xdf, x1, x2);

    for (int i = 0; i < num_segments; i++) {
        valuecheck(segment_times[i], result.getStartTime(i));
    }
    valuecheck(segment_times[num_segments], result.getEndTime(num_segments - 1));

    // check value constraints
    double tol = 1e-10;
    PiecewisePolynomial<double> derivative = result.derivative();
    PiecewisePolynomial<double> second_derivative = derivative.derivative();


    valuecheck(result.value(result.getStartTime(0)), x0, tol);
    valuecheck(derivative.value(result.getStartTime(0)), xd0, tol);


    valuecheck(result.value(result.getEndTime(num_segments - 1)), xf, tol);
    valuecheck(derivative.value(result.getEndTime(num_segments - 1)), xdf, tol);

    valuecheck(result.value(result.getStartTime(1)), x1, tol);
    valuecheck(result.value(result.getStartTime(2)), x2, tol);

    // check continuity constraints
    double eps = 1e-10;
    int num_knots = num_segments - 1;
    for (int i = 0; i < num_knots; i++) {
        double t_knot = result.getEndTime(i);
        valuecheck(result.value(t_knot - eps), result.value(t_knot + eps), 1e-8);
        valuecheck(derivative.value(t_knot - eps), derivative.value(t_knot + eps), 1e-8);
        valuecheck(second_derivative.value(t_knot - eps), second_derivative.value(t_knot + eps), 1e-8);
    }

#if !defined(WIN32) && !defined(WIN64)
    int ntests = 1000;
    cout << "time: " << measure<chrono::microseconds>::execution(randomSpeedTest, ntests) / (double) ntests << " microseconds." << endl;
#endif

    cout << "test passed" << endl;

    return 0;
}
开发者ID:tczhouyou,项目名称:drake,代码行数:57,代码来源:testSplineGeneration.cpp

示例2: testIntegralAndDerivative

void testIntegralAndDerivative() {
    vector<Polynomial<CoefficientType>> polynomials;
    int num_coefficients = 5;
    int num_segments = 3;
    typedef typename Polynomial<CoefficientType>::CoefficientsType CoefficientsType;
    for (int i = 0; i < num_segments; ++i) {
        CoefficientsType coefficients = CoefficientsType::Random(num_coefficients);
        polynomials.push_back(Polynomial<CoefficientType>(coefficients));
    }

    // differentiate integral, get original back
    PiecewisePolynomial<CoefficientType> piecewise(polynomials, generateSegmentTimes(num_segments));
    PiecewisePolynomial<CoefficientType> piecewise_back = piecewise.integral().derivative();
    if (!piecewise.isApprox(piecewise_back, 1e-10))
        throw runtime_error("wrong");

    // check value at start time
    double value_at_t0 = uniform(generator);
    PiecewisePolynomial<CoefficientType> integral = piecewise.integral(value_at_t0);
    valuecheck(value_at_t0, integral.value(piecewise.getStartTime()), 1e-10);

    // check continuity at knot points
    for (int i = 0; i < piecewise.getNumberOfSegments() - 1; ++i) {
        valuecheck(integral.getPolynomial(i).value(integral.getDuration(i)), integral.getPolynomial(i + 1).value(0.0));
    }
}
开发者ID:tczhouyou,项目名称:drake,代码行数:26,代码来源:testPiecewisePolynomial.cpp

示例3: randomSpeedTest

double randomSpeedTest(int ntests) {
    double ret = 0.0;
    int num_segments = 3;
    vector<double> segment_times = generateSegmentTimes(num_segments);
    for (int i = 0; i < ntests; i++) {

        double x0 = uniform(generator);
        double xd0 = uniform(generator);

        double xf = uniform(generator);
        double xdf = uniform(generator);

        double x1 = uniform(generator);
        double x2 = uniform(generator);

        PiecewisePolynomial<double> result = twoWaypointCubicSpline(segment_times, x0, xd0, xf, xdf, x1, x2);
        ret += result.value(0.0);
    }
    return ret;
}
开发者ID:tczhouyou,项目名称:drake,代码行数:20,代码来源:testSplineGeneration.cpp

示例4: evaluateXYZExpmapCubicSpline

void evaluateXYZExpmapCubicSpline(double t, const PiecewisePolynomial<double> &spline, Isometry3d &body_pose_des, Vector6d &xyzdot_angular_vel, Vector6d &xyzddot_angular_accel) {
  Vector6d xyzexp = spline.value(t);
  auto derivative = spline.derivative();
  Vector6d xyzexpdot = derivative.value(t);
  Vector6d xyzexpddot = derivative.derivative().value(t);
  xyzdot_angular_vel.head<3>() = xyzexpdot.head<3>();
  xyzddot_angular_accel.head<3>() = xyzexpddot.head<3>();
  Vector3d expmap = xyzexp.tail<3>();
  auto quat_grad = expmap2quat(expmap,2);
  Vector4d quat = quat_grad.value();
  body_pose_des.linear() = quat2rotmat(quat);
  body_pose_des.translation() = xyzexp.head<3>();
  Vector4d quat_dot = quat_grad.gradient().value() * xyzexpdot.tail<3>();
  quat_grad.gradient().gradient().value().resize(12,3);
  Matrix<double,12,3> dE = quat_grad.gradient().gradient().value();
  Vector3d expdot = xyzexpdot.tail<3>();
  Matrix<double,4,3> Edot = matGradMult(dE,expdot);
  Vector4d quat_ddot = quat_grad.gradient().value()*xyzexpddot.tail<3>() + Edot*expdot;
  Matrix<double,3,4> M;
  Matrix<double,12,4> dM;
  quatdot2angularvelMatrix(quat,M,&dM);
  xyzdot_angular_vel.tail<3>() = M*quat_dot;
  xyzddot_angular_accel.tail<3>() = M*quat_ddot + matGradMult(dM,quat_dot)*quat_dot;
}
开发者ID:henryhwu,项目名称:drake,代码行数:24,代码来源:controlUtil.cpp

示例5: evaluateXYZExpmapCubicSpline

void evaluateXYZExpmapCubicSpline(double t,
                                  const PiecewisePolynomial<double> &spline,
                                  Isometry3d &body_pose_des,
                                  Vector6d &xyzdot_angular_vel,
                                  Vector6d &xyzddot_angular_accel) {
  Vector6d xyzexp = spline.value(t);
  auto derivative = spline.derivative();
  Vector6d xyzexpdot = derivative.value(t);
  Vector6d xyzexpddot = derivative.derivative().value(t);

  // translational part
  body_pose_des.translation() = xyzexp.head<3>();
  xyzdot_angular_vel.head<3>() = xyzexpdot.head<3>();
  xyzddot_angular_accel.head<3>() = xyzexpddot.head<3>();

  // rotational part
  auto expmap = xyzexp.tail<3>();
  auto expmap_dot = xyzexpdot.tail<3>();
  auto expmap_ddot = xyzexpddot.tail<3>();

  // construct autodiff version of expmap
  // autodiff derivatives represent first and second derivative w.r.t. time
  // TODO(tkoolen): should use 1 instead of dynamic, but causes issues
  // with eigen on MSVC 32 bit; should be fixed in 3.3
  typedef AutoDiffScalar<Matrix<double, Dynamic, 1>> ADScalar;
  // TODO(tkoolen): should use 1 instead of dynamic, but causes issues
  // with eigen on MSVC 32 bit; should be fixed in 3.3
  typedef AutoDiffScalar<Matrix<ADScalar, Dynamic, 1>> ADScalarSecondDeriv;
  Matrix<ADScalarSecondDeriv, 3, 1> expmap_autodiff;
  for (int i = 0; i < expmap_autodiff.size(); i++) {
    expmap_autodiff(i).value() = expmap(i);
    expmap_autodiff(i).derivatives().resize(1);
    expmap_autodiff(i).derivatives()(0) = expmap_dot(i);
    expmap_autodiff(i).derivatives()(0).derivatives().resize(1);
    expmap_autodiff(i).derivatives()(0).derivatives()(0) = expmap_ddot(i);
  }

  auto quat_autodiff = expmap2quat(expmap_autodiff);
  Vector4d quat = autoDiffToValueMatrix(autoDiffToValueMatrix(quat_autodiff));
  body_pose_des.linear() = quat2rotmat(quat);

  // angular velocity and acceleration are computed from quaternion derivative
  // meaning of derivative vectors remains the same: first and second
  // derivatives w.r.t. time
  decltype(quat_autodiff) quat_dot_autodiff;
  for (int i = 0; i < quat_dot_autodiff.size(); i++) {
    quat_dot_autodiff(i).value() = quat_autodiff(i).derivatives()(0).value();
    quat_dot_autodiff(i).derivatives().resize(1);
    quat_dot_autodiff(i).derivatives()(0).value() =
        quat_autodiff(i).derivatives()(0).derivatives()(0);
    quat_dot_autodiff(i).derivatives()(0).derivatives().resize(1);
    quat_dot_autodiff(i).derivatives()(0).derivatives()(0) =
        std::numeric_limits<double>::quiet_NaN();  // we're not interested in
                                                   // second deriv of angular
                                                   // velocity
  }

  auto omega_autodiff =
      (quatdot2angularvelMatrix(quat_autodiff) * quat_dot_autodiff).eval();
  auto omega = xyzdot_angular_vel.tail<3>();
  auto omega_dot = xyzddot_angular_accel.tail<3>();
  for (int i = 0; i < omega_autodiff.size(); i++) {
    omega(i) = omega_autodiff(i).value().value();
    omega_dot(i) = omega_autodiff(i).derivatives()(0).value();
  }
}
开发者ID:Grisson,项目名称:drake,代码行数:66,代码来源:controlUtil.cpp

示例6: dt

ExponentialPlusPiecewisePolynomial<double> s1Trajectory(const TVLQRData &sys, const PiecewisePolynomial<double> &zmp_trajectory,const Ref<const MatrixXd> &S) {
  size_t n = static_cast<size_t>(zmp_trajectory.getNumberOfSegments());
  int d = zmp_trajectory.getSegmentPolynomialDegree(0);
  int k = d + 1;

  for (size_t i = 1; i < n; i++) {
    assert(zmp_trajectory.getSegmentPolynomialDegree(i) == d);
  }

  VectorXd dt(n);
  std::vector<double> breaks = zmp_trajectory.getSegmentTimes();

  for (size_t i = 0; i < n; i++) {
    dt(i) = breaks[i + 1] - breaks[i];
  }  
  
  MatrixXd zmp_tf = zmp_trajectory.value(zmp_trajectory.getEndTime());
  PiecewisePolynomial<double> zbar_pp = zmp_trajectory - zmp_tf;

  Matrix2d R1i = sys.R1.inverse();
  MatrixXd NB = sys.N.transpose() + sys.B.transpose() * S; //2 x 4
  Matrix4d A2 = NB.transpose() * R1i * sys.B.transpose() - sys.A.transpose();
  MatrixXd B2 = 2 * (sys.C.transpose() - NB.transpose() * R1i * sys.D) * sys.Qy; //4 x 2
  Matrix4d A2i = A2.inverse();

  MatrixXd alpha = MatrixXd::Zero(4, n);

  vector<MatrixXd> beta;
  VectorXd s1dt;
  
  for (size_t i = 0; i < n ; i++) {
    beta.push_back(MatrixXd::Zero(4, k));
  }

  for (int j = static_cast<int>(n) - 1; j >= 0; j--) { 

    auto poly_mat = zbar_pp.getPolynomialMatrix(j);
    size_t nq = poly_mat.rows();
    MatrixXd poly_coeffs = MatrixXd::Zero(nq, k);

    for (size_t x = 0; x < nq; x++) {
      poly_coeffs.row(x) = poly_mat(x).getCoefficients().transpose();
    }    
    
    beta[j].col(k - 1) = -A2i * B2 * poly_coeffs.col(k - 1);
    
    for (int i = k - 2; i >= 0; i--) {
      beta[j].col(i) = A2i * ((i+1) * beta[j].col(i + 1) - B2 * poly_coeffs.col(i));
    }
    
    if (j == n - 1) {
      s1dt = VectorXd::Zero(4);
    } else {
      s1dt = alpha.col(j+1) + beta[j + 1].col(0);
    }

    VectorXd dtpow(k);
    for (size_t p = 0; p < k; p++) { 
      dtpow(p) = pow(dt(j), static_cast<int>(p));
    }
    
    alpha.col(j) = (A2*dt(j)).eval().exp().inverse() * (s1dt - beta[j]*dtpow);
  }
  
  vector<PiecewisePolynomial<double>::PolynomialMatrix> polynomial_matrices;
  for (int segment = 0; segment < n ; segment++) {
    PiecewisePolynomial<double>::PolynomialMatrix polynomial_matrix(4, 1);
    for(int row = 0; row < 4; row++) {
      polynomial_matrix(row) = Polynomial<double>(beta[segment].row(row));
    }
    polynomial_matrices.push_back(polynomial_matrix);
  }

  PiecewisePolynomial<double> pp_part = PiecewisePolynomial<double>(polynomial_matrices, breaks);
  auto s1traj = ExponentialPlusPiecewisePolynomial<double>(Matrix4d::Identity(), A2, alpha, pp_part);
  return s1traj;
}
开发者ID:Sproulx,项目名称:drake,代码行数:77,代码来源:zmpUtil.cpp


注:本文中的PiecewisePolynomial::value方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。