本文整理汇总了C++中PathNode::Clear方法的典型用法代码示例。如果您正苦于以下问题:C++ PathNode::Clear方法的具体用法?C++ PathNode::Clear怎么用?C++ PathNode::Clear使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类PathNode
的用法示例。
在下文中一共展示了PathNode::Clear方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: GetPathNode
PathNode* PathNodePool::GetPathNode( unsigned frame, void* _state, float _costFromStart, float _estToGoal, PathNode* _parent )
{
unsigned key = Hash( _state );
PathNode* root = hashTable[key];
while( root ) {
if ( root->state == _state ) {
if ( root->frame == frame ) // This is the correct state and correct frame.
break;
// Correct state, wrong frame.
root->Init( frame, _state, _costFromStart, _estToGoal, _parent );
break;
}
root = ( _state < root->state ) ? root->child[0] : root->child[1];
}
if ( !root ) {
// allocate new one
root = Alloc();
root->Clear();
root->Init( frame, _state, _costFromStart, _estToGoal, _parent );
AddPathNode( key, root );
}
return root;
}
示例2: SolveForNearStates
int MicroPather::SolveForNearStates( void* startState, std::vector< StateCost >* near, float maxCost )
{
/* http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
1 function Dijkstra(Graph, source):
2 for each vertex v in Graph: // Initializations
3 dist[v] := infinity // Unknown distance function from source to v
4 previous[v] := undefined // Previous node in optimal path from source
5 dist[source] := 0 // Distance from source to source
6 Q := the set of all nodes in Graph
// All nodes in the graph are unoptimized - thus are in Q
7 while Q is not empty: // The main loop
8 u := vertex in Q with smallest dist[]
9 if dist[u] = infinity:
10 break // all remaining vertices are inaccessible from source
11 remove u from Q
12 for each neighbor v of u: // where v has not yet been removed from Q.
13 alt := dist[u] + dist_between(u, v)
14 if alt < dist[v]: // Relax (u,v,a)
15 dist[v] := alt
16 previous[v] := u
17 return dist[]
*/
++frame;
OpenQueue open( graph ); // nodes to look at
ClosedSet closed( graph );
nodeCostVec.resize(0);
stateCostVec.resize(0);
PathNode closedSentinel;
closedSentinel.Clear();
closedSentinel.Init( frame, 0, FLT_MAX, FLT_MAX, 0 );
closedSentinel.next = closedSentinel.prev = &closedSentinel;
PathNode* newPathNode = pathNodePool.GetPathNode( frame, startState, 0, 0, 0 );
open.Push( newPathNode );
while ( !open.Empty() )
{
PathNode* node = open.Pop(); // smallest dist
closed.Add( node ); // add to the things we've looked at
closedSentinel.AddBefore( node );
if ( node->totalCost > maxCost )
continue; // Too far away to ever get here.
GetNodeNeighbors( node, &nodeCostVec );
for( int i=0; i<node->numAdjacent; ++i )
{
MPASSERT( node->costFromStart < FLT_MAX );
float newCost = node->costFromStart + nodeCostVec[i].cost;
PathNode* inOpen = nodeCostVec[i].node->inOpen ? nodeCostVec[i].node : 0;
PathNode* inClosed = nodeCostVec[i].node->inClosed ? nodeCostVec[i].node : 0;
MPASSERT( !( inOpen && inClosed ) );
PathNode* inEither = inOpen ? inOpen : inClosed;
MPASSERT( inEither != node );
if ( inEither && inEither->costFromStart <= newCost ) {
continue; // Do nothing. This path is not better than existing.
}
// Groovy. We have new information or improved information.
PathNode* child = nodeCostVec[i].node;
MPASSERT( child->state != newPathNode->state ); // should never re-process the parent.
child->parent = node;
child->costFromStart = newCost;
child->estToGoal = 0;
child->totalCost = child->costFromStart;
if ( inOpen ) {
open.Update( inOpen );
}
else if ( !inClosed ) {
open.Push( child );
}
}
}
near->clear();
for( PathNode* pNode=closedSentinel.next; pNode != &closedSentinel; pNode=pNode->next ) {
if ( pNode->totalCost <= maxCost ) {
StateCost sc;
sc.cost = pNode->totalCost;
sc.state = pNode->state;
near->push_back( sc );
}
}
#ifdef DEBUG
for( unsigned i=0; i<near->size(); ++i ) {
for( unsigned k=i+1; k<near->size(); ++k ) {
MPASSERT( near->at(i).state != near->at(k).state );
}
}
#endif
//.........这里部分代码省略.........