本文整理汇总了C++中PathNode::AddBefore方法的典型用法代码示例。如果您正苦于以下问题:C++ PathNode::AddBefore方法的具体用法?C++ PathNode::AddBefore怎么用?C++ PathNode::AddBefore使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类PathNode
的用法示例。
在下文中一共展示了PathNode::AddBefore方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: Push
void OpenQueue::Push( PathNode* pNode )
{
MPASSERT( pNode->inOpen == 0 );
MPASSERT( pNode->inClosed == 0 );
#ifdef DEBUG_PATH_DEEP
printf( "Open Push: " );
graph->PrintStateInfo( pNode->state );
printf( " total=%.1f\n", pNode->totalCost );
#endif
// Add sorted. Lowest to highest cost path. Note that the sentinel has
// a value of FLT_MAX, so it should always be sorted in.
MPASSERT( pNode->totalCost < FLT_MAX );
PathNode* iter = sentinel->next;
while ( true )
{
if ( pNode->totalCost < iter->totalCost ) {
iter->AddBefore( pNode );
pNode->inOpen = 1;
break;
}
iter = iter->next;
}
MPASSERT( pNode->inOpen ); // make sure this was actually added.
#ifdef DEBUG
sentinel->CheckList();
#endif
}
示例2: Update
void OpenQueue::Update( PathNode* pNode )
{
#ifdef DEBUG_PATH_DEEP
printf( "Open Update: " );
graph->PrintStateInfo( pNode->state );
printf( " total=%.1f\n", pNode->totalCost );
#endif
MPASSERT( pNode->inOpen );
// If the node now cost less than the one before it,
// move it to the front of the list.
if ( pNode->prev != sentinel && pNode->totalCost < pNode->prev->totalCost ) {
pNode->Unlink();
sentinel->next->AddBefore( pNode );
}
// If the node is too high, move to the right.
if ( pNode->totalCost > pNode->next->totalCost ) {
PathNode* it = pNode->next;
pNode->Unlink();
while ( pNode->totalCost > it->totalCost )
it = it->next;
it->AddBefore( pNode );
#ifdef DEBUG
sentinel->CheckList();
#endif
}
}
示例3: SolveForNearStates
int MicroPather::SolveForNearStates( void* startState, std::vector< StateCost >* near, float maxCost )
{
/* http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
1 function Dijkstra(Graph, source):
2 for each vertex v in Graph: // Initializations
3 dist[v] := infinity // Unknown distance function from source to v
4 previous[v] := undefined // Previous node in optimal path from source
5 dist[source] := 0 // Distance from source to source
6 Q := the set of all nodes in Graph
// All nodes in the graph are unoptimized - thus are in Q
7 while Q is not empty: // The main loop
8 u := vertex in Q with smallest dist[]
9 if dist[u] = infinity:
10 break // all remaining vertices are inaccessible from source
11 remove u from Q
12 for each neighbor v of u: // where v has not yet been removed from Q.
13 alt := dist[u] + dist_between(u, v)
14 if alt < dist[v]: // Relax (u,v,a)
15 dist[v] := alt
16 previous[v] := u
17 return dist[]
*/
++frame;
OpenQueue open( graph ); // nodes to look at
ClosedSet closed( graph );
nodeCostVec.resize(0);
stateCostVec.resize(0);
PathNode closedSentinel;
closedSentinel.Clear();
closedSentinel.Init( frame, 0, FLT_MAX, FLT_MAX, 0 );
closedSentinel.next = closedSentinel.prev = &closedSentinel;
PathNode* newPathNode = pathNodePool.GetPathNode( frame, startState, 0, 0, 0 );
open.Push( newPathNode );
while ( !open.Empty() )
{
PathNode* node = open.Pop(); // smallest dist
closed.Add( node ); // add to the things we've looked at
closedSentinel.AddBefore( node );
if ( node->totalCost > maxCost )
continue; // Too far away to ever get here.
GetNodeNeighbors( node, &nodeCostVec );
for( int i=0; i<node->numAdjacent; ++i )
{
MPASSERT( node->costFromStart < FLT_MAX );
float newCost = node->costFromStart + nodeCostVec[i].cost;
PathNode* inOpen = nodeCostVec[i].node->inOpen ? nodeCostVec[i].node : 0;
PathNode* inClosed = nodeCostVec[i].node->inClosed ? nodeCostVec[i].node : 0;
MPASSERT( !( inOpen && inClosed ) );
PathNode* inEither = inOpen ? inOpen : inClosed;
MPASSERT( inEither != node );
if ( inEither && inEither->costFromStart <= newCost ) {
continue; // Do nothing. This path is not better than existing.
}
// Groovy. We have new information or improved information.
PathNode* child = nodeCostVec[i].node;
MPASSERT( child->state != newPathNode->state ); // should never re-process the parent.
child->parent = node;
child->costFromStart = newCost;
child->estToGoal = 0;
child->totalCost = child->costFromStart;
if ( inOpen ) {
open.Update( inOpen );
}
else if ( !inClosed ) {
open.Push( child );
}
}
}
near->clear();
for( PathNode* pNode=closedSentinel.next; pNode != &closedSentinel; pNode=pNode->next ) {
if ( pNode->totalCost <= maxCost ) {
StateCost sc;
sc.cost = pNode->totalCost;
sc.state = pNode->state;
near->push_back( sc );
}
}
#ifdef DEBUG
for( unsigned i=0; i<near->size(); ++i ) {
for( unsigned k=i+1; k<near->size(); ++k ) {
MPASSERT( near->at(i).state != near->at(k).state );
}
}
#endif
//.........这里部分代码省略.........