本文整理汇总了C++中Painter::Quadratic方法的典型用法代码示例。如果您正苦于以下问题:C++ Painter::Quadratic方法的具体用法?C++ Painter::Quadratic怎么用?C++ Painter::Quadratic使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Painter
的用法示例。
在下文中一共展示了Painter::Quadratic方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: RenderCharPath
void RenderCharPath(const char* gbuf, unsigned total_size, Painter& sw, double xx, double yy)
{
const char* cur_glyph = gbuf;
const char* end_glyph = gbuf + total_size;
while(cur_glyph < end_glyph) {
const TTPOLYGONHEADER* th = (TTPOLYGONHEADER*)cur_glyph;
const char* end_poly = cur_glyph + th->cb;
const char* cur_poly = cur_glyph + sizeof(TTPOLYGONHEADER);
sw.Move(xx + fx_to_dbl(th->pfxStart.x), yy - fx_to_dbl(th->pfxStart.y));
while(cur_poly < end_poly) {
const TTPOLYCURVE* pc = (const TTPOLYCURVE*)cur_poly;
if (pc->wType == TT_PRIM_LINE)
for(int i = 0; i < pc->cpfx; i++)
sw.Line(xx + fx_to_dbl(pc->apfx[i].x), yy - fx_to_dbl(pc->apfx[i].y));
if (pc->wType == TT_PRIM_QSPLINE) {
int u;
for (u = 0; u < pc->cpfx - 1; u++) { // Walk through points in spline
POINTFX pnt_b = pc->apfx[u]; // B is always the current point
POINTFX pnt_c = pc->apfx[u+1];
if (u < pc->cpfx - 2) { // If not on last spline, compute C
*(int*)&pnt_c.x = (*(int*)&pnt_b.x + *(int*)&pnt_c.x) / 2;
*(int*)&pnt_c.y = (*(int*)&pnt_b.y + *(int*)&pnt_c.y) / 2;
}
sw.Quadratic(xx + fx_to_dbl(pnt_b.x), yy - fx_to_dbl(pnt_b.y),
xx + fx_to_dbl(pnt_c.x), yy - fx_to_dbl(pnt_c.y));
}
}
cur_poly += sizeof(WORD) * 2 + sizeof(POINTFX) * pc->cpfx;
}
sw.Close();
cur_glyph += th->cb;
}
}
示例2: Quadratic
virtual void Quadratic(Pointf p1, Pointf p2) {
sw->Quadratic(p1, p2);
}
示例3: RenderOutline
bool RenderOutline(const FT_Outline& outline, Painter& path, double xx, double yy)
{
FT_Vector v_last;
FT_Vector v_control;
FT_Vector v_start;
FT_Vector* point;
FT_Vector* limit;
char* tags;
int n; // index of contour in outline
char tag; // current point's state
int first = 0; // index of first point in contour
for(n = 0; n < outline.n_contours; n++) {
int last = outline.contours[n];
limit = outline.points + last;
v_start = outline.points[first];
v_last = outline.points[last];
v_control = v_start;
point = outline.points + first;
tags = outline.tags + first;
tag = FT_CURVE_TAG(tags[0]);
if(tag == FT_CURVE_TAG_CUBIC) return false;
if(tag == FT_CURVE_TAG_CONIC) {
if(FT_CURVE_TAG(outline.tags[last]) == FT_CURVE_TAG_ON) {
// start at last point if it is on the curve
v_start = v_last;
limit--;
}
else {
// if both first and last points are conic,
// start at their middle and record its position
// for closure
v_start.x = (v_start.x + v_last.x) / 2;
v_start.y = (v_start.y + v_last.y) / 2;
v_last = v_start;
}
point--;
tags--;
}
path.Move(ft_dbl(v_start.x) + xx, -ft_dbl(v_start.y) + yy);
while(point < limit) {
point++;
tags++;
tag = FT_CURVE_TAG(tags[0]);
switch(tag) {
case FT_CURVE_TAG_ON:
path.Line(ft_dbl(point->x) + xx, -ft_dbl(point->y) + yy);
continue;
case FT_CURVE_TAG_CONIC:
v_control.x = point->x;
v_control.y = point->y;
Do_Conic:
if(point < limit) {
FT_Vector vec;
FT_Vector v_middle;
point++;
tags++;
tag = FT_CURVE_TAG(tags[0]);
vec.x = point->x;
vec.y = point->y;
if(tag == FT_CURVE_TAG_ON) {
path.Quadratic(ft_dbl(v_control.x) + xx, -ft_dbl(v_control.y) + yy,
ft_dbl(vec.x) + xx, -ft_dbl(vec.y) + yy);
continue;
}
if(tag != FT_CURVE_TAG_CONIC) return false;
v_middle.x = (v_control.x + vec.x) / 2;
v_middle.y = (v_control.y + vec.y) / 2;
path.Quadratic(ft_dbl(v_control.x) + xx, -ft_dbl(v_control.y) + yy,
ft_dbl(v_middle.x) + xx, -ft_dbl(v_middle.y) + yy);
v_control = vec;
goto Do_Conic;
}
path.Quadratic(ft_dbl(v_control.x) + xx, -ft_dbl(v_control.y) + yy,
ft_dbl(v_start.x) + xx, -ft_dbl(v_start.y) + yy);
goto Close;
default:
FT_Vector vec1, vec2;
if(point + 1 > limit || FT_CURVE_TAG(tags[1]) != FT_CURVE_TAG_CUBIC)
return false;
vec1.x = point[0].x;
vec1.y = point[0].y;
vec2.x = point[1].x;
vec2.y = point[1].y;
point += 2;
tags += 2;
if(point <= limit) {
FT_Vector vec;
vec.x = point->x;
vec.y = point->y;
path.Cubic(ft_dbl(vec1.x) + xx, -ft_dbl(vec1.y) + yy,
ft_dbl(vec2.x) + xx, -ft_dbl(vec2.y) + yy,
ft_dbl(vec.x) + xx, -ft_dbl(vec.y) + yy);
continue;
}
path.Cubic(ft_dbl(vec1.x) + xx, -ft_dbl(vec1.y) + yy,
ft_dbl(vec2.x) + xx, -ft_dbl(vec2.y) + yy,
ft_dbl(v_start.x) + xx, -ft_dbl(v_start.y) + yy);
goto Close;
//.........这里部分代码省略.........