当前位置: 首页>>代码示例>>C++>>正文


C++ PHINode::use_empty方法代码示例

本文整理汇总了C++中PHINode::use_empty方法的典型用法代码示例。如果您正苦于以下问题:C++ PHINode::use_empty方法的具体用法?C++ PHINode::use_empty怎么用?C++ PHINode::use_empty使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在PHINode的用法示例。


在下文中一共展示了PHINode::use_empty方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: RewriteLoopExitValues

/// RewriteLoopExitValues - Check to see if this loop has a computable
/// loop-invariant execution count.  If so, this means that we can compute the
/// final value of any expressions that are recurrent in the loop, and
/// substitute the exit values from the loop into any instructions outside of
/// the loop that use the final values of the current expressions.
///
/// This is mostly redundant with the regular IndVarSimplify activities that
/// happen later, except that it's more powerful in some cases, because it's
/// able to brute-force evaluate arbitrary instructions as long as they have
/// constant operands at the beginning of the loop.
void IndVarSimplify::RewriteLoopExitValues(Loop *L,
                                           SCEVExpander &Rewriter) {
  // Verify the input to the pass in already in LCSSA form.
  assert(L->isLCSSAForm(*DT));

  SmallVector<BasicBlock*, 8> ExitBlocks;
  L->getUniqueExitBlocks(ExitBlocks);

  // Find all values that are computed inside the loop, but used outside of it.
  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
  // the exit blocks of the loop to find them.
  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
    BasicBlock *ExitBB = ExitBlocks[i];

    // If there are no PHI nodes in this exit block, then no values defined
    // inside the loop are used on this path, skip it.
    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
    if (!PN) continue;

    unsigned NumPreds = PN->getNumIncomingValues();

    // Iterate over all of the PHI nodes.
    BasicBlock::iterator BBI = ExitBB->begin();
    while ((PN = dyn_cast<PHINode>(BBI++))) {
      if (PN->use_empty())
        continue; // dead use, don't replace it

      // SCEV only supports integer expressions for now.
      if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
        continue;

      // It's necessary to tell ScalarEvolution about this explicitly so that
      // it can walk the def-use list and forget all SCEVs, as it may not be
      // watching the PHI itself. Once the new exit value is in place, there
      // may not be a def-use connection between the loop and every instruction
      // which got a SCEVAddRecExpr for that loop.
      SE->forgetValue(PN);

      // Iterate over all of the values in all the PHI nodes.
      for (unsigned i = 0; i != NumPreds; ++i) {
        // If the value being merged in is not integer or is not defined
        // in the loop, skip it.
        Value *InVal = PN->getIncomingValue(i);
        if (!isa<Instruction>(InVal))
          continue;

        // If this pred is for a subloop, not L itself, skip it.
        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
          continue; // The Block is in a subloop, skip it.

        // Check that InVal is defined in the loop.
        Instruction *Inst = cast<Instruction>(InVal);
        if (!L->contains(Inst))
          continue;

        // Okay, this instruction has a user outside of the current loop
        // and varies predictably *inside* the loop.  Evaluate the value it
        // contains when the loop exits, if possible.
        const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
        if (!ExitValue->isLoopInvariant(L))
          continue;

        Changed = true;
        ++NumReplaced;

        Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);

        DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
                     << "  LoopVal = " << *Inst << "\n");

        PN->setIncomingValue(i, ExitVal);

        // If this instruction is dead now, delete it.
        RecursivelyDeleteTriviallyDeadInstructions(Inst);

        if (NumPreds == 1) {
          // Completely replace a single-pred PHI. This is safe, because the
          // NewVal won't be variant in the loop, so we don't need an LCSSA phi
          // node anymore.
          PN->replaceAllUsesWith(ExitVal);
          RecursivelyDeleteTriviallyDeadInstructions(PN);
        }
      }
      if (NumPreds != 1) {
        // Clone the PHI and delete the original one. This lets IVUsers and
        // any other maps purge the original user from their records.
        PHINode *NewPN = cast<PHINode>(PN->clone());
        NewPN->takeName(PN);
        NewPN->insertBefore(PN);
        PN->replaceAllUsesWith(NewPN);
//.........这里部分代码省略.........
开发者ID:nickl-,项目名称:xchain-ios,代码行数:101,代码来源:IndVarSimplify.cpp

示例2: set

void FunctionLoweringInfo::set(Function &fn, MachineFunction &mf,
                               bool EnableFastISel) {
  Fn = &fn;
  MF = &mf;
  RegInfo = &MF->getRegInfo();

  // Create a vreg for each argument register that is not dead and is used
  // outside of the entry block for the function.
  for (Function::arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end();
       AI != E; ++AI)
    if (!isOnlyUsedInEntryBlock(AI, EnableFastISel))
      InitializeRegForValue(AI);

  // Initialize the mapping of values to registers.  This is only set up for
  // instruction values that are used outside of the block that defines
  // them.
  Function::iterator BB = Fn->begin(), EB = Fn->end();
  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
        const Type *Ty = AI->getAllocatedType();
        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
        unsigned Align =
          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
                   AI->getAlignment());

        TySize *= CUI->getZExtValue();   // Get total allocated size.
        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
        StaticAllocaMap[AI] =
          MF->getFrameInfo()->CreateStackObject(TySize, Align, false);
      }

  for (; BB != EB; ++BB)
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
        if (!isa<AllocaInst>(I) ||
            !StaticAllocaMap.count(cast<AllocaInst>(I)))
          InitializeRegForValue(I);

  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
  // also creates the initial PHI MachineInstrs, though none of the input
  // operands are populated.
  for (BB = Fn->begin(), EB = Fn->end(); BB != EB; ++BB) {
    MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
    MBBMap[BB] = MBB;
    MF->push_back(MBB);

    // Transfer the address-taken flag. This is necessary because there could
    // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
    // the first one should be marked.
    if (BB->hasAddressTaken())
      MBB->setHasAddressTaken();

    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
    // appropriate.
    PHINode *PN;
    DebugLoc DL;
    for (BasicBlock::iterator
           I = BB->begin(), E = BB->end(); I != E; ++I) {

      PN = dyn_cast<PHINode>(I);
      if (!PN || PN->use_empty()) continue;

      unsigned PHIReg = ValueMap[PN];
      assert(PHIReg && "PHI node does not have an assigned virtual register!");

      SmallVector<EVT, 4> ValueVTs;
      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
        EVT VT = ValueVTs[vti];
        unsigned NumRegisters = TLI.getNumRegisters(Fn->getContext(), VT);
        const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
        for (unsigned i = 0; i != NumRegisters; ++i)
          BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
        PHIReg += NumRegisters;
      }
    }
  }
}
开发者ID:Gcrosby5269,项目名称:clamav-bytecode-compiler,代码行数:79,代码来源:FunctionLoweringInfo.cpp


注:本文中的PHINode::use_empty方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。