当前位置: 首页>>代码示例>>C++>>正文


C++ OsiSolverInterface::writeMps方法代码示例

本文整理汇总了C++中OsiSolverInterface::writeMps方法的典型用法代码示例。如果您正苦于以下问题:C++ OsiSolverInterface::writeMps方法的具体用法?C++ OsiSolverInterface::writeMps怎么用?C++ OsiSolverInterface::writeMps使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在OsiSolverInterface的用法示例。


在下文中一共展示了OsiSolverInterface::writeMps方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: finalModelX


//.........这里部分代码省略.........
                        for (int j = buildStart[iColumn]; j < buildStart[iColumn+1]; j++) {
                            int jRow = buildRow[j];
                            jRow = lookupRow[jRow];
                            assert (jRow >= 0 && jRow < nRow);
                            buildRow[j] = jRow;
                        }
                    }
                    finalModel->addCols(nCreate, buildStart, buildRow, buildElement, NULL, NULL, buildObj);
                    int numberFinal = finalModel->getNumCols();
                    for (iColumn = numberOther; iColumn < numberFinal; iColumn++) {
                        if (markKnapsack[iKnapsack] < 0) {
                            finalModel->setColUpper(iColumn, maxCoefficient);
                            finalModel->setInteger(iColumn);
                        } else {
                            finalModel->setColUpper(iColumn, maxCoefficient + 1.0);
                            finalModel->setInteger(iColumn);
                        }
                        OsiSimpleInteger * sosObject = new OsiSimpleInteger(finalModel, iColumn);
                        sosObject->setPriority(1000000);
                        object[nObj++] = sosObject;
                        buildRow[iColumn-numberOther] = iColumn;
                        buildElement[iColumn-numberOther] = 1.0;
                    }
                    if (markKnapsack[iKnapsack] < 0) {
                        // convexity row
                        finalModel->addRow(numberFinal - numberOther, buildRow, buildElement, 1.0, 1.0);
                    } else {
                        int iColumn = markKnapsack[iKnapsack];
                        int n = numberFinal - numberOther;
                        buildRow[n] = iColumn;
                        buildElement[n++] = -fabs(coefficient[iKnapsack]);
                        // convexity row (sort of)
                        finalModel->addRow(n, buildRow, buildElement, 0.0, 0.0);
                        OsiSOS * sosObject = new OsiSOS(finalModel, n - 1, buildRow, NULL, 1);
                        sosObject->setPriority(iKnapsack + SOSPriority);
                        // Say not integral even if is (switch off heuristics)
                        sosObject->setIntegerValued(false);
                        object[nSOS++] = sosObject;
                    }
                    numberOther = numberFinal;
                }
                finalModel->addObjects(nObj, object);
                for (iKnapsack = 0; iKnapsack < nObj; iKnapsack++)
                    delete object[iKnapsack];
                delete [] object;
                // Can we move any rows to cuts
                const int * cutMarker = coinModel.cutMarker();
                if (cutMarker && 0) {
                    printf("AMPL CUTS OFF until global cuts fixed\n");
                    cutMarker = NULL;
                }
                if (cutMarker) {
                    // Row copy
                    const CoinPackedMatrix * matrixByRow = finalModel->getMatrixByRow();
                    const double * elementByRow = matrixByRow->getElements();
                    const int * column = matrixByRow->getIndices();
                    const CoinBigIndex * rowStart = matrixByRow->getVectorStarts();
                    const int * rowLength = matrixByRow->getVectorLengths();

                    const double * rowLower = finalModel->getRowLower();
                    const double * rowUpper = finalModel->getRowUpper();
                    int nDelete = 0;
                    for (iRow = 0; iRow < numberRows; iRow++) {
                        if (cutMarker[iRow] && lookupRow[iRow] >= 0) {
                            int jRow = lookupRow[iRow];
                            whichRow[nDelete++] = jRow;
                            int start = rowStart[jRow];
                            stored.addCut(rowLower[jRow], rowUpper[jRow],
                                          rowLength[jRow], column + start, elementByRow + start);
                        }
                    }
                    finalModel->deleteRows(nDelete, whichRow);
                }
                knapsackStart[numberKnapsack] = finalModel->getNumCols();
                delete [] buildObj;
                delete [] buildElement;
                delete [] buildStart;
                delete [] buildRow;
                finalModel->writeMps("full");
            }
        }
    }
    delete [] whichKnapsack;
    delete [] markRow;
    delete [] markKnapsack;
    delete [] coefficient;
    delete [] linear;
    delete [] whichRow;
    delete [] lookupRow;
    delete si;
    si = NULL;
    if (!badModel && finalModel) {
        finalModel->setDblParam(OsiObjOffset, coinModel.objectiveOffset());
        return finalModel;
    } else {
        delete finalModel;
        printf("can't make knapsacks - did you set fixedPriority (extra1)\n");
        return NULL;
    }
}
开发者ID:coapp-packages,项目名称:coin-cbc,代码行数:101,代码来源:CbcSolverExpandKnapsack.cpp

示例2: CoinPackedMatrix

int
main(void)
{
   // Create a problem pointer.  We use the base class here.
   OsiSolverInterface *si;

   // When we instantiate the object, we need a specific derived class.
   si = new OSIXXX;

   // Build our own instance from scratch

   /*
    * This section adapted from Matt Galati's example 
    * on the COIN-OR Tutorial website.
    *
    * Problem from Bertsimas, Tsitsiklis page 21
    *  
    *  optimal solution: x* = (1,1)
    *  
    *  minimize -1 x0 - 1 x1
    *  s.t       1 x0 + 2 x1 <= 3
    *            2 x0 + 1 x1 <= 3
    *              x0        >= 0
    *              x1        >= 0
    */

   int n_cols = 2;
   double *objective    = new double[n_cols];//the objective coefficients
   double *col_lb       = new double[n_cols];//the column lower bounds
   double *col_ub       = new double[n_cols];//the column upper bounds

   //Define the objective coefficients.
   //minimize -1 x0 - 1 x1
   objective[0] = -1.0;
   objective[1] = -1.0;

   //Define the variable lower/upper bounds.
   // x0 >= 0   =>  0 <= x0 <= infinity
   // x1 >= 0   =>  0 <= x1 <= infinity
   col_lb[0] = 0.0;
   col_lb[1] = 0.0;
   col_ub[0] = si->getInfinity();
   col_ub[1] = si->getInfinity();
     
   int n_rows = 2;
   double *row_lb = new double[n_rows]; //the row lower bounds
   double *row_ub = new double[n_rows]; //the row upper bounds
     
   //Define the constraint matrix.
   CoinPackedMatrix *matrix =  new CoinPackedMatrix(false,0,0);
   matrix->setDimensions(0, n_cols);

   //1 x0 + 2 x1 <= 3  =>  -infinity <= 1 x0 + 2 x2 <= 3
   CoinPackedVector row1;
   row1.insert(0, 1.0);
   row1.insert(1, 2.0);
   row_lb[0] = -1.0 * si->getInfinity();
   row_ub[0] = 3.0;
   matrix->appendRow(row1);

   //2 x0 + 1 x1 <= 3  =>  -infinity <= 2 x0 + 1 x1 <= 3
   CoinPackedVector row2;
   row2.insert(0, 2.0);
   row2.insert(1, 1.0);
   row_lb[1] = -1.0 * si->getInfinity();
   row_ub[1] = 3.0;
   matrix->appendRow(row2);

   //load the problem to OSI
   si->loadProblem(*matrix, col_lb, col_ub, objective, row_lb, row_ub);

   //write the MPS file to a file called example.mps
   si->writeMps("example");

  

   // Solve the (relaxation of the) problem
   si->initialSolve();

   // Check the solution
   if ( si->isProvenOptimal() ) { 
      std::cout << "Found optimal solution!" << std::endl; 
      std::cout << "Objective value is " << si->getObjValue() << std::endl;

      int n = si->getNumCols();
      const double *solution;
      solution = si->getColSolution();
      // We could then print the solution or examine it.
   } else {
      std::cout << "Didn't find optimal solution." << std::endl;
      // Could then check other status functions.
   }

   return 0;
}
开发者ID:NealCaffrey989,项目名称:CBC,代码行数:95,代码来源:build.cpp

示例3: doBaCParam


//.........这里部分代码省略.........
            << std::hex << ippSolver << std::dec ;
        if (ippSolver) {
            std::cout
                << ", log level " << ippSolver->messageHandler()->logLevel() ;
        }
        std::cout << "." << std::endl ;
#   endif
        /*
          ippSolver == 0 is success of a sort --- integer preprocess has found the
          problem to be infeasible or unbounded. Need to think about how to indicate
          status.
        */
        if (!ippSolver) {
            std::cout
                << "Integer preprocess says infeasible or unbounded" << std::endl ;
            delete preIppSolver ;
            ctlBlk->setBaBStatus(&babModel, CbcGenCtlBlk::BACwIPP) ;
            return (0) ;
        }
#   if COIN_CBC_VERBOSITY > 0
        else {
            std::cout
                << "After integer preprocessing, model has "
                << ippSolver->getNumRows()
                << " rows, " << ippSolver->getNumCols() << " columns, and "
                << ippSolver->getNumElements() << " elements." << std::endl ;
        }
#   endif

        preIppSolver->setHintParam(OsiDoInBranchAndCut, false, OsiHintDo) ;
        ippSolver->setHintParam(OsiDoInBranchAndCut, false, OsiHintDo) ;

        if (ippAction == CbcGenCtlBlk::IPPSave) {
            ippSolver->writeMps("presolved", "mps", 1.0) ;
            std::cout
                << "Integer preprocessed model written to `presolved.mps' "
                << "as minimisation problem." << std::endl ;
        }

        OsiSolverInterface *osiTmp = ippSolver->clone() ;
        babModel.assignSolver(osiTmp) ;
        babSolver = babModel.solver() ;
#   if CBC_TRACK_SOLVERS > 0
        std::cout
            << "doBaCParam: clone of IPP solver passed to babModel is "
            << std::hex << babSolver << std::dec
            << ", log level " << babSolver->messageHandler()->logLevel()
            << "." << std::endl ;
#   endif
        if (!solveRelaxation(&babModel)) {
            delete preIppSolver ;
            ctlBlk->setBaBStatus(&babModel, CbcGenCtlBlk::BACwIPPRelax) ;
            return (0) ;
        }
#   if COIN_CBC_VERBOSITY > 0
        std::cout
            << "doBaCParam: presolved relaxation z = "
            << babSolver->getObjValue() << "." << std::endl ;
#   endif
        babModel.setMaximumSeconds(timeLeft - (CoinCpuTime() - time1)) ;
        didIPP = true ;
    }
    /*
      At this point, babModel and babSolver hold the constraint system we'll use
      for B&C (either the original system or the preprocessed system) and we have
      a solution to the lp relaxation.
开发者ID:Flymir,项目名称:coin-all,代码行数:67,代码来源:CbcGenBaB.cpp


注:本文中的OsiSolverInterface::writeMps方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。