当前位置: 首页>>代码示例>>C++>>正文


C++ OsiSolverInterface::setInteger方法代码示例

本文整理汇总了C++中OsiSolverInterface::setInteger方法的典型用法代码示例。如果您正苦于以下问题:C++ OsiSolverInterface::setInteger方法的具体用法?C++ OsiSolverInterface::setInteger怎么用?C++ OsiSolverInterface::setInteger使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在OsiSolverInterface的用法示例。


在下文中一共展示了OsiSolverInterface::setInteger方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: problem_convert_to_osi

void* problem_convert_to_osi(Problem *p)
{
    int i;
    double rowLb, rowUb;
    OsiSolverInterface *solver = new OsiClpSolverInterface();
    CoinBuild cb;

    solver->setIntParam(OsiNameDiscipline, 2);
    solver->messageHandler()->setLogLevel(0);
    solver->setHintParam(OsiDoReducePrint,true,OsiHintTry);

    for(i = 0; i < p->numCols; i++)
    {
        solver->addCol(0, NULL, NULL, p->colLb[i], p->colUb[i], p->objCoef[i]);
        solver->setColName(i, p->colName[i]);
        
        if(p->colType[i] == CONTINUOUS)
            solver->setContinuous(i);
        else 
            solver->setInteger(i);
    }

    for(i = 0; i < p->numRows; i++)
    {
        switch(p->rowSense[i])
        {
            case 'E':
                rowLb = p->rhs[i];
                rowUb = p->rhs[i];
            break;

            case 'L':
                rowLb = -p->infty;
                rowUb = p->rhs[i];
            break;

            case 'G':
                rowLb = p->rhs[i];
                rowUb = p->infty;
            break;

            default:
                fprintf(stderr, "Error: invalid type of constraint!\n");
                exit(EXIT_FAILURE);
        }

        cb.addRow(p->rowNElements[i], p->idxsByRow[i], p->coefsByRow[i], rowLb, rowUb);
    }

    solver->addRows(cb);
    
    for(i = 0; i < p->numRows; i++)
        solver->setRowName(i, p->rowName[i]);

    return solver;
}
开发者ID:h-g-s,项目名称:npsep,代码行数:56,代码来源:problem.cpp

示例2: objSense

//#############################################################################
void 
MibSHeuristic::lowerObjHeuristic()
{

  /* 
     optimize wrt to lower-level objective 
     over current feasible lp feasible region 
  */

  MibSModel * model = MibSModel_;

  OsiSolverInterface * oSolver = model->getSolver();
  //OsiSolverInterface * hSolver = new OsiCbcSolverInterface();
  OsiSolverInterface* hSolver = new OsiSymSolverInterface();

  double objSense(model->getLowerObjSense());  
  int lCols(model->getLowerDim());
  int uCols(model->getUpperDim());
  int * lColIndices = model->getLowerColInd();
  int * uColIndices = model->getUpperColInd();
  double * lObjCoeffs = model->getLowerObjCoeffs();
  
  //int tCols(lCols + uCols);
  int tCols(oSolver->getNumCols());
  //assert(tCols == oSolver->getNumCols());

  hSolver->loadProblem(*oSolver->getMatrixByCol(),
		       oSolver->getColLower(), oSolver->getColUpper(),
		       oSolver->getObjCoefficients(),
		       oSolver->getRowLower(), oSolver->getRowUpper());

  int j(0);
  for(j = 0; j < tCols; j++){
    if(oSolver->isInteger(j))
      hSolver->setInteger(j);
  }

  double * nObjCoeffs = new double[tCols];
  int i(0), index(0);
  
  CoinZeroN(nObjCoeffs, tCols);

  for(i = 0; i < lCols; i++){
    index = lColIndices[i];
    nObjCoeffs[index] = lObjCoeffs[i];
  }

  //MibS objective sense is the opposite of OSI's!
  hSolver->setObjSense(objSense);

  hSolver->setObjective(nObjCoeffs);
 
  //double cutoff(model->getCutoff());
  double cutoff(model->getKnowledgeBroker()->getIncumbentValue());

  if(model->getNumSolutions()){
  
    CoinPackedVector objCon;
    //double rhs(cutoff * objSense);
    //double smlTol(1.0);
    double rhs(cutoff);
       
    for(i = 0; i < tCols; i++){
      objCon.insert(i, oSolver->getObjCoefficients()[i] 
		    * oSolver->getObjSense());
    }
    
    hSolver->addRow(objCon, - hSolver->getInfinity(), rhs);
  }
  
  if(0)
     hSolver->writeLp("lobjheurstic");

  if(0){
    dynamic_cast<OsiCbcSolverInterface *> 
      (hSolver)->getModelPtr()->messageHandler()->setLogLevel(0);
  }    
  else{
    dynamic_cast<OsiSymSolverInterface *> 
      (hSolver)->setSymParam("prep_level", -1);
    
    dynamic_cast<OsiSymSolverInterface *> 
      (hSolver)->setSymParam("verbosity", -2);

    dynamic_cast<OsiSymSolverInterface *> 
      (hSolver)->setSymParam("max_active_nodes", 1);
  }

  hSolver->branchAndBound();

  if(hSolver->isProvenOptimal()){

    double upperObjVal(0.0);

    /*****************NEW ******************/

    MibSSolution *mibSol = NULL;

    OsiSolverInterface * lSolver = model->bS_->setUpModel(hSolver, true);
//.........这里部分代码省略.........
开发者ID:elspeth0,项目名称:MibS,代码行数:101,代码来源:MibSHeuristic.cpp

示例3: uObjSense

//#############################################################################
mcSol 
MibSHeuristic::solveSubproblem(double beta)
{

  /* 
     optimize wrt to weighted upper-level objective 
     over current feasible lp feasible region 
  */

  MibSModel * model = MibSModel_;
  OsiSolverInterface * oSolver = model->getSolver();
  //OsiSolverInterface * sSolver = new OsiCbcSolverInterface();  
  OsiSolverInterface* sSolver = new OsiSymSolverInterface();
  //sSolver = oSolver->clone();
  //OsiSolverInterface * sSolver = tmpSolver;
  //OsiSolverInterface * tmpSolver = new OsiSolverInterface(oSolver);
  
  double uObjSense(oSolver->getObjSense());
  double lObjSense(model->getLowerObjSense());  
  int lCols(model->getLowerDim());
  int uCols(model->getUpperDim());
  int * lColIndices = model->getLowerColInd();
  int * uColIndices = model->getUpperColInd();
  double * lObjCoeffs = model->getLowerObjCoeffs();
  const double * uObjCoeffs = oSolver->getObjCoefficients();

  double etol(etol_);
  int tCols(uCols + lCols); 

  assert(tCols == oSolver->getNumCols());


  sSolver->loadProblem(*oSolver->getMatrixByCol(),
		       oSolver->getColLower(), oSolver->getColUpper(),
		       oSolver->getObjCoefficients(),
		       oSolver->getRowLower(), oSolver->getRowUpper());

  int j(0);
  for(j = 0; j < tCols; j++){
    if(oSolver->isInteger(j))
      sSolver->setInteger(j);
  }


  double * nObjCoeffs = new double[tCols];
  int i(0), index(0);
  
  CoinZeroN(nObjCoeffs, tCols);
  
  /* Multiply the UL columns of the UL objective by beta */
  for(i = 0; i < uCols; i++){
    index = uColIndices[i];
    if(fabs(uObjCoeffs[index]) > etol)
      nObjCoeffs[index] = beta * uObjCoeffs[index] * uObjSense;
    else 
      nObjCoeffs[index] = 0.0;
  }
    
  /* Multiply the LL columns of the UL objective by beta */
  for(i = 0; i < lCols; i++){
    index = lColIndices[i];
    if(fabs(uObjCoeffs[index]) > etol)
      nObjCoeffs[index] = beta* uObjCoeffs[index] * uObjSense;
    else
      nObjCoeffs[index] = 0.0;
  }
  
  /* Add the LL columns of the LL objective multiplied by (1 - beta) */
  for(i = 0; i < lCols; i++){
    index = lColIndices[i];
    if(fabs(lObjCoeffs[i]) > etol)
      nObjCoeffs[index] += (1 - beta) * lObjCoeffs[i] * lObjSense;
  }
  
  sSolver->setObjective(nObjCoeffs);

  //int i(0);
  if(0){
    for(i = 0; i < sSolver->getNumCols(); i++){
      std::cout << "betaobj " << sSolver->getObjCoefficients()[i] << std::endl;
    }
  }

  if(0){
     sSolver->writeLp("afterbeta");
     //sSolver->writeMps("afterbeta");
  }
  
  if(0){  
    for(i = 0; i < sSolver->getNumCols(); i++){
      std::cout << "obj " << sSolver->getObjCoefficients()[i] << std::endl;
      std::cout << "upper " << sSolver->getColUpper()[i] << std::endl;
      std::cout << "lower " << sSolver->getColLower()[i] << std::endl;
    }
  }

  if(0){
    dynamic_cast<OsiCbcSolverInterface *> 
      (sSolver)->getModelPtr()->messageHandler()->setLogLevel(0);
//.........这里部分代码省略.........
开发者ID:elspeth0,项目名称:MibS,代码行数:101,代码来源:MibSHeuristic.cpp

示例4: main

int main (int argc, const char *argv[])
{

  /* Define your favorite OsiSolver.

     CbcModel clones the solver so use solver1 up to the time you pass it
     to CbcModel then use a pointer to cloned solver (model.solver())
  */
  
  OsiClpSolverInterface solver1;
  /* From now on we can build model in a solver independent way.
     You can add rows one at a time but for large problems this is slow so
     this example uses CoinBuild or CoinModel
  */
  OsiSolverInterface * solver = &solver1;
  // Data (is exmip1.mps in Mps/Sample
  // Objective 
  double objValue[]={1.0,2.0,0.0,0.0,0.0,0.0,0.0,-1.0};
  // Lower bounds for columns
  double columnLower[]={2.5,0.0,0.0,0.0,0.5,0.0,0.0,0.0};
  // Upper bounds for columns
  double columnUpper[]={COIN_DBL_MAX,4.1,1.0,1.0,4.0,
                  COIN_DBL_MAX,COIN_DBL_MAX,4.3};
  // Lower bounds for row activities
  double rowLower[]={2.5,-COIN_DBL_MAX,-COIN_DBL_MAX,1.8,3.0};
  // Upper bounds for row activities
  double rowUpper[]={COIN_DBL_MAX,2.1,4.0,5.0,15.0};
  // Matrix stored packed
  int column[] = {0,1,3,4,7,
                  1,2,
                  2,5,
                  3,6,
                  4,7};
  double element[] = {3.0,1.0,-2.0,-1.0,-1.0,
                      2.0,1.1,
                      1.0,1.0,
                      2.8,-1.2,
                      1.0,1.9};
  int starts[]={0,5,7,9,11,13};
  // Integer variables (note upper bound already 1.0)
  int whichInt[]={2,3};
  int numberRows=(int) (sizeof(rowLower)/sizeof(double));
  int numberColumns=(int) (sizeof(columnLower)/sizeof(double));
#define BUILD 2
#if BUILD==1
  // Using CoinBuild 
  // First do columns (objective and bounds)
  int i;
  // We are not adding elements 
  for (i=0;i<numberColumns;i++) {
    solver->addCol(0,NULL,NULL,columnLower[i],columnUpper[i],
                    objValue[i]);
  }
  // mark as integer
  for (i=0;i<(int) (sizeof(whichInt)/sizeof(int));i++)
    solver->setInteger(whichInt[i]);
  // Now build rows
  CoinBuild build;
  for (i=0;i<numberRows;i++) {
    int startRow = starts[i];
    int numberInRow = starts[i+1]-starts[i];
    build.addRow(numberInRow,column+startRow,element+startRow,
                 rowLower[i],rowUpper[i]);
  }  
  // add rows into solver
  solver->addRows(build);
#else
  /* using CoinModel - more flexible but still beta.
     Can do exactly same way but can mix and match much more.
     Also all operations are on building object
  */
  CoinModel build;
  // First do columns (objective and bounds)
  int i;
  for (i=0;i<numberColumns;i++) {
    build.setColumnBounds(i,columnLower[i],columnUpper[i]);
    build.setObjective(i,objValue[i]);
  }
  // mark as integer
  for (i=0;i<(int) (sizeof(whichInt)/sizeof(int));i++)
    build.setInteger(whichInt[i]);
  // Now build rows
  for (i=0;i<numberRows;i++) {
    int startRow = starts[i];
    int numberInRow = starts[i+1]-starts[i];
    build.addRow(numberInRow,column+startRow,element+startRow,
                 rowLower[i],rowUpper[i]);
  }  
  // add rows into solver
  solver->loadFromCoinModel(build);
#endif

  // Pass to solver
  CbcModel model(*solver);
  model.solver()->setHintParam(OsiDoReducePrint,true,OsiHintTry);


  // Set up some cut generators and defaults
  // Probing first as gets tight bounds on continuous

//.........这里部分代码省略.........
开发者ID:Flymir,项目名称:coin-all,代码行数:101,代码来源:sample5.cpp

示例5: model


//.........这里部分代码省略.........
                        }
                        numberContinuous++;
                    } else {
                        if (fabs(value - floor(value + 0.5)) > 1.0e-12)
                            allIntegerCoeff = false;
                    }
                } else {
                    sumFixed += lower[jColumn] * value;
                }
            }
            double low = rowLower[iRow];
            if (low > -1.0e20) {
                low -= sumFixed;
                if (fabs(low - floor(low + 0.5)) > 1.0e-12)
                    allIntegerCoeff = false;
            }
            double up = rowUpper[iRow];
            if (up < 1.0e20) {
                up -= sumFixed;
                if (fabs(up - floor(up + 0.5)) > 1.0e-12)
                    allIntegerCoeff = false;
            }
            if (!allIntegerCoeff)
                continue; // can't do
            if (numberContinuous == 1) {
                // see if really integer
                // This does not allow for complicated cases
                if (low == up) {
                    if (fabs(value1) > 1.0e-3) {
                        value1 = 1.0 / value1;
                        if (fabs(value1 - floor(value1 + 0.5)) < 1.0e-12) {
                            // integer
                            changed[numberChanged++] = jColumn1;
                            solver->setInteger(jColumn1);
                            if (upper[jColumn1] > 1.0e20)
                                solver->setColUpper(jColumn1, 1.0e20);
                            if (lower[jColumn1] < -1.0e20)
                                solver->setColLower(jColumn1, -1.0e20);
                        }
                    }
                } else {
                    if (fabs(value1) > 1.0e-3) {
                        value1 = 1.0 / value1;
                        if (fabs(value1 - floor(value1 + 0.5)) < 1.0e-12) {
                            // This constraint will not stop it being integer
                            ignore[iRow] = 1;
                        }
                    }
                }
            } else if (numberContinuous == 2) {
                if (low == up) {
                    /* need general theory - for now just look at 2 cases -
                       1 - +- 1 one in column and just costs i.e. matching objective
                       2 - +- 1 two in column but feeds into G/L row which will try and minimize
                    */
                    if (fabs(value1) == 1.0 && value1*value2 == -1.0 && !lower[jColumn1]
                            && !lower[jColumn2]) {
                        int n = 0;
                        int i;
                        double objChange = direction * (objective[jColumn1] + objective[jColumn2]);
                        double bound = CoinMin(upper[jColumn1], upper[jColumn2]);
                        bound = CoinMin(bound, 1.0e20);
                        for ( i = columnStart[jColumn1]; i < columnStart[jColumn1] + columnLength[jColumn1]; i++) {
                            int jRow = row[i];
                            double value = element[i];
                            if (jRow != iRow) {
开发者ID:SnowyJune973,项目名称:future_net,代码行数:67,代码来源:CbcSolverAnalyze.cpp

示例6: mat

void 
HeuristicInnerApproximation::extractInnerApproximation(Bonmin::OsiTMINLPInterface & nlp, OsiSolverInterface &si,
  const double * x, bool getObj) {
   printf("************  Start extracting inner approx");
   int n;
   int m;
   int nnz_jac_g;
   int nnz_h_lag;
   Ipopt::TNLP::IndexStyleEnum index_style;
   Bonmin::TMINLP2TNLP * problem = nlp.problem(); 
   //Get problem information
   problem->get_nlp_info(n, m, nnz_jac_g, nnz_h_lag, index_style);
   
   Bonmin::vector<int> jRow(nnz_jac_g);
   Bonmin::vector<int> jCol(nnz_jac_g);
   Bonmin::vector<double> jValues(nnz_jac_g);
   problem->eval_jac_g(n, NULL, 0, m, nnz_jac_g, jRow(), jCol(), NULL);
   if(index_style == Ipopt::TNLP::FORTRAN_STYLE)//put C-style
   {
     for(int i = 0 ; i < nnz_jac_g ; i++){
       jRow[i]--;
       jCol[i]--;
     }
   }
   
   //get Jacobian
   problem->eval_jac_g(n, x, 1, m, nnz_jac_g, NULL, NULL,
       jValues());
   
   Bonmin::vector<double> g(m);
   problem->eval_g(n, x, 1, m, g());
   
   Bonmin::vector<int> nonLinear(m);
   //store non linear constraints (which are to be removed from IA)
   int numNonLinear = 0;
   const double * rowLower = nlp.getRowLower();
   const double * rowUpper = nlp.getRowUpper();
   const double * colLower = nlp.getColLower();
   const double * colUpper = nlp.getColUpper();
   assert(m == nlp.getNumRows());
   double infty = si.getInfinity();
   double nlp_infty = nlp.getInfinity();
   Bonmin::vector<Ipopt::TNLP::LinearityType>  constTypes(m);
   Bonmin::vector<Ipopt::TNLP::LinearityType>  varTypes(n);
   problem->get_constraints_linearity(m, constTypes());
   problem->get_variables_linearity(n, varTypes());
   for (int i = 0; i < m; i++) {
     if (constTypes[i] == Ipopt::TNLP::NON_LINEAR) {
       nonLinear[numNonLinear++] = i;
     }
   }
   Bonmin::vector<double> rowLow(m - numNonLinear);
   Bonmin::vector<double> rowUp(m - numNonLinear);
   int ind = 0;
   for (int i = 0; i < m; i++) {
     if (constTypes[i] != Ipopt::TNLP::NON_LINEAR) {
       if (rowLower[i] > -nlp_infty) {
         //   printf("Lower %g ", rowLower[i]);
         rowLow[ind] = (rowLower[i]);
       } else
         rowLow[ind] = -infty;
       if (rowUpper[i] < nlp_infty) {
         //   printf("Upper %g ", rowUpper[i]);
         rowUp[ind] = (rowUpper[i]);
       } else
         rowUp[ind] = infty;
       ind++;
     }
   
   }
   
   CoinPackedMatrix mat(true, jRow(), jCol(), jValues(), nnz_jac_g);
   mat.setDimensions(m, n); // In case matrix was empty, this should be enough
   
   //remove non-linear constraints
   mat.deleteRows(numNonLinear, nonLinear());
   
   int numcols = nlp.getNumCols();
   Bonmin::vector<double> obj(numcols);
   for (int i = 0; i < numcols; i++)
     obj[i] = 0.;
   
   si.loadProblem(mat, nlp.getColLower(), nlp.getColUpper(), 
                  obj(), rowLow(), rowUp());
   const Bonmin::TMINLP::VariableType* variableType = problem->var_types();
   for (int i = 0; i < n; i++) {
     if ((variableType[i] == Bonmin::TMINLP::BINARY) || (variableType[i] == Bonmin::TMINLP::INTEGER))
       si.setInteger(i);
   }
   if (getObj) {
     bool addObjVar = false;
     if (problem->hasLinearObjective()) {
       double zero;
       Bonmin::vector<double> x0(n, 0.);
       problem->eval_f(n, x0(), 1, zero);
       si.setDblParam(OsiObjOffset, -zero);
       //Copy the linear objective and don't create a dummy variable.
       problem->eval_grad_f(n, x, 1, obj());
       si.setObjective(obj());
     } else {
//.........这里部分代码省略.........
开发者ID:coin-or,项目名称:Bonmin,代码行数:101,代码来源:SepaHeuristicInnerApproximation.cpp

示例7: mexFunction

// mex function usage:
//  [x,y,status] = mexosi(n_vars,n_cons,A,x_lb,x_ub,c,Ax_lb,Ax_ub,isMIP,isQP,vartype,Q,options)
//                        0      1      2 3    4    5 6     7     8     9    10     11 12
void mexFunction(int nlhs, mxArray *plhs[],int nrhs, const mxArray *prhs[])
{
	// Enable printing in MATLAB
	int loglevel = 0;
	DerivedHandler *mexprinter = new DerivedHandler(); // assumed open	
	mexprinter->setLogLevel(loglevel);		 
	// check that we have the right number of inputs
	if(nrhs < 10) mexErrMsgTxt("At least 10 inputs required in call to mexosi. Bug in osi.m?...");
	// check that we have the right number of outputs
	if(nlhs < 3) mexErrMsgTxt("At least 3 ouptuts required in call to mexosi. Bug in osi.m?...");

    // Get pointers to input values
	const int    n_vars = (int)*mxGetPr(prhs[0]);
	const int    n_cons = (int)*mxGetPr(prhs[1]);
	const mxArray    *A =  prhs[2];
	const double  *x_lb =  mxGetPr(prhs[3]);
	const double  *x_ub =  mxGetPr(prhs[4]);
	const double     *c =  mxGetPr(prhs[5]);
	const double *Ax_lb =  mxGetPr(prhs[6]);
	const double *Ax_ub =  mxGetPr(prhs[7]);
	const bool    isMIP = (bool)*(mxLogical*)mxGetData(prhs[8]);
	const bool     isQP = (bool)*(mxLogical*)mxGetData(prhs[9]);
	mxLogical *isinteger = (mxLogical*)mxGetData(prhs[10]);
	const mxArray*    Q = prhs[11];
	// process the options
	int  returnStatus = 0;
	// extract row/col/value data from A
	const mwIndex * A_col_starts = mxGetJc(A);
	const mwIndex * A_row_index  = mxGetIr(A);
	const double  * A_data       = mxGetPr(A);
    // figure out the number of non-zeros in A
    int nnz = (int)(A_col_starts[n_vars] - A_col_starts[0]); // number of non-zeros
    //mexPrintf("nnz = %d, n_vars = %d, n_cons = %d\n",nnz,n_vars,n_cons);

    // we need to convert these into other types of indices for Coin to use them
    std::vector<CoinBigIndex> A_col_starts_coin(A_col_starts,A_col_starts+n_vars+1);
    std::vector<int>          A_row_index_coin(A_row_index,A_row_index+nnz);
    
    // declare the solver
    OsiSolverInterface* pSolver;
// 	initialize the solver
    if ( isMIP ) {
        pSolver = new OsiCbcSolverInterface;
    } else {
        pSolver = new OsiClpSolverInterface;
    }
   
//	OsiCbcSolverInterface is deprecated and CbcModel should be used instead but don't
//	know how to get that working with loadProblem. 
//     OsiCbcSolverInterface solver1;
//     CbcModel model(solver1);
//     CbcMain0(model);
//     OsiSolverInterface * pSolver = model.solver();
    
	if (nrhs>12) { // get stuff out of the options structure if provided
		// Finish me
	}
    
//     mexPrintf("Setting Log Level to 0.\n");
	// load the problem
	mexPrintf("Loading the problem.\n");
	pSolver->loadProblem( n_vars, n_cons, // problem size
						  &A_col_starts_coin[0], &A_row_index_coin[0], A_data, // the A matrix
						  x_lb,  x_ub, c, // the objective and bounds
						  Ax_lb, Ax_ub ); // the constraint bounds
    
//     pSolver->messageHandler()->setLogLevel(0); // This doesn't seem to work
    pSolver->setHintParam(OsiDoReducePrint,true,OsiHintTry);
    
	// deal with integer inputs
	if ( isMIP ) {
		for(int i=0;i<n_vars;i++) {
			if (isinteger[i]) pSolver->setInteger(i);
		}
	}
	if (isQP) {
		error("QP is not working yet");
		// need to call loadQuadraticObjective here ???
	}
    
//     CbcModel model(pSolver);
//     model.solver()->setHintParam(OsiDoReducePrint,true,OsiHintTry);
    
    
	// solve the problem
	//mexPrintf("Trying to solve the problem.\n");
    if (isMIP) {
        pSolver->branchAndBound();
//         model.branchAndBound();
    } else {
//         model.initialSolve();
        pSolver->initialSolve();
    }
	
	// Allocate memory for return data
    plhs[0] = mxCreateDoubleMatrix(n_vars,1, mxREAL); // for the solution
    plhs[1] = mxCreateDoubleMatrix(n_cons,1, mxREAL); // for the constraint prices
//.........这里部分代码省略.........
开发者ID:mitre-rise,项目名称:coupled-networks,代码行数:101,代码来源:mexosi.cpp

示例8: main

int main (int argc, const char *argv[])
{

  OsiClpSolverInterface solver1;
  //#define USE_OSI_NAMES
#ifdef USE_OSI_NAMES
  // Say we are keeping names (a bit slower this way)
  solver1.setIntParam(OsiNameDiscipline,1);
#endif
  // Read in model using argv[1]
  // and assert that it is a clean model
  std::string mpsFileName;
#if defined(SAMPLEDIR)
  mpsFileName = SAMPLEDIR "/p0033.mps";
#else
  if (argc < 2) {
    fprintf(stderr, "Do not know where to find sample MPS files.\n");
    exit(1);
  }
#endif
  if (argc>=2) mpsFileName = argv[1];
  int numMpsReadErrors = solver1.readMps(mpsFileName.c_str(),"");
  assert(numMpsReadErrors==0);

  // Strip off integer information and save
  int numberColumns = solver1.getNumCols();
  char * integer = new char[numberColumns];
  int i;
  for (i=0;i<numberColumns;i++) {
    if (solver1.isInteger(i)) {
      integer[i]=1;
      solver1.setContinuous(i);
    } else {
      integer[i]=0;
    }
  }
  // Pass to Cbc initialize defaults 
  CbcModel model(solver1);    
  CbcMain0(model);

  // Solve just to show there are no integers
  model.branchAndBound();
  // Set cutoff etc back in model and solver
  model.resetModel();
  // Solver was cloned so get it
  OsiSolverInterface * solver = model.solver();
  // Put back integers.  Here the user could do anything really
#define ADD_DIRECTLY
#ifndef ADD_DIRECTLY
  for (i=0;i<numberColumns;i++) {
    if (integer[i])
      solver->setInteger(i);
  }
#else
  CbcObject ** objects = new CbcObject * [ numberColumns];
  int n=0;
  for (i=0;i<numberColumns;i++) {
    if (integer[i]) {
      CbcSimpleIntegerDynamicPseudoCost * newObject =
	new CbcSimpleIntegerDynamicPseudoCost(&model,i);
      objects[n++]=newObject;
    }
  }
  model.addObjects(n,objects);
  for (i=0;i<n;i++)
    delete objects[i];
  delete [] objects;
#endif
  delete [] integer;
  /* Now go into code for standalone solver
     Could copy arguments and add -quit at end to be safe
     but this will do
  */
  if (argc>2) {
    CbcMain1(argc-1,argv+1,model);
  } else {
    const char * argv2[]={"driver3","-solve","-quit"};
    CbcMain1(3,argv2,model);
  }

  // Print solution if finished (could get from model.bestSolution() as well

  if (solver->getObjValue()*solver->getObjSense()<1.0e50) {
    
    const double * solution = solver->getColSolution();
    
    int iColumn;
    std::cout<<std::setiosflags(std::ios::fixed|std::ios::showpoint)<<std::setw(14);
    
    std::cout<<"--------------------------------------"<<std::endl;
#ifdef USE_OSI_NAMES
    
    for (iColumn=0;iColumn<numberColumns;iColumn++) {
      double value=solution[iColumn];
      if (fabs(value)>1.0e-7&&solver->isInteger(iColumn)) 
	std::cout<<std::setw(6)<<iColumn<<" "<<std::setw(8)<<setiosflags(std::ios::left)<<solver->getColName(iColumn)
		 <<resetiosflags(std::ios::adjustfield)<<std::setw(14)<<" "<<value<<std::endl;
    }
#else
    // names may not be in current solver - use original
//.........这里部分代码省略.........
开发者ID:Flymir,项目名称:coin-all,代码行数:101,代码来源:driver3.cpp

示例9: etol


//.........这里部分代码省略.........
       index1 = lRowIndices[i];
       start = matStarts[index1];
       end = start + matrix->getVectorSize(index1);
       for(j = start; j < end; j++){
       index2 = matIndices[j];
       //tmp = findIndex(index, lCols, lColIndices);
       tmp = binarySearch(0, lCols - 1, index2, lColIndices);
       if(tmp > -1)
       row.insert(tmp, matElements[j]);
       }
       newMat->appendRow(row);
       }
     */
     for(i = 0; i < lRows; i++){
	CoinPackedVector row;
	index1 = lRowIndices[i];
	for(j = 0; j < lCols; j++){
	   index2 = lColIndices[j];
	   tmp = matrix->getCoefficient(index1, index2);
	   row.insert(j, tmp);
	}
	newMat->appendRow(row);
     }

     /*
       nSolver->assignProblem(newMat, colLb, colUb,
       objCoeffs, rowLb, rowUb);
     */
     
     nSolver->loadProblem(*newMat, colLb, colUb,
			  objCoeffs, rowLb, rowUb);
     
     for(i = 0; i < intCnt; i++){
	nSolver->setInteger(integerVars[i]);
     }
     //nSolver->setInteger(integerVars, intCnt);
     
     nSolver->setObjSense(objSense); //1 min; -1 max
     
     nSolver->setHintParam(OsiDoReducePrint, true, OsiHintDo);

#if 0
     if(0){
	dynamic_cast<OsiCbcSolverInterface *> 
	   (nSolver)->getModelPtr()->messageHandler()->setLogLevel(0);
     }
     else{
	dynamic_cast<OsiSymSolverInterface *> 
	   (nSolver)->setSymParam("prep_level", -1);
	
	dynamic_cast<OsiSymSolverInterface *> 
	   (nSolver)->setSymParam("verbosity", -2);
	
	dynamic_cast<OsiSymSolverInterface *> 
	   (nSolver)->setSymParam("max_active_nodes", 1);
     }
#endif
     delete [] integerVars;

  }else{
     nSolver = solver_;
  }

#define SYM_VERSION_IS_WS strcmp(SYMPHONY_VERSION, "WS")  

#if SYMPHONY_VERSION_IS_WS
开发者ID:elspeth0,项目名称:MibS,代码行数:67,代码来源:MibSBilevel.cpp

示例10: mat

void 
HeuristicInnerApproximation::extractInnerApproximation(OsiTMINLPInterface & nlp, OsiSolverInterface &si,
                                                       const double * x, bool getObj) {
   int n;
   int m;
   int nnz_jac_g;
   int nnz_h_lag;
   Ipopt::TNLP::IndexStyleEnum index_style;
   TMINLP2TNLP * problem = nlp.problem(); 
   //Get problem information
   problem->get_nlp_info(n, m, nnz_jac_g, nnz_h_lag, index_style);
   
   vector<int> jRow(nnz_jac_g);
   vector<int> jCol(nnz_jac_g);
   vector<double> jValues(nnz_jac_g);
   problem->eval_jac_g(n, NULL, 0, m, nnz_jac_g, jRow(), jCol(), NULL);
   if(index_style == Ipopt::TNLP::FORTRAN_STYLE)//put C-style
   {
     for(int i = 0 ; i < nnz_jac_g ; i++){
       jRow[i]--;
       jCol[i]--;
     }
   }
   
   //get Jacobian
   problem->eval_jac_g(n, x, 1, m, nnz_jac_g, NULL, NULL,
       jValues());
   
   vector<double> g(m);
   problem->eval_g(n, x, 1, m, g());
   
   vector<int> nonLinear(m);
   //store non linear constraints (which are to be removed from IA)
   int numNonLinear = 0;
   const double * rowLower = nlp.getRowLower();
   const double * rowUpper = nlp.getRowUpper();
   const double * colLower = nlp.getColLower();
   const double * colUpper = nlp.getColUpper();
   assert(m == nlp.getNumRows());
   double infty = si.getInfinity();
   double nlp_infty = nlp.getInfinity();
   vector<Ipopt::TNLP::LinearityType>  constTypes(m);
   problem->get_constraints_linearity(m, constTypes());
   for (int i = 0; i < m; i++) {
     if (constTypes[i] == Ipopt::TNLP::NON_LINEAR) {
       nonLinear[numNonLinear++] = i;
     }
   }
   vector<double> rowLow(m - numNonLinear);
   vector<double> rowUp(m - numNonLinear);
   int ind = 0;
   for (int i = 0; i < m; i++) {
     if (constTypes[i] != Ipopt::TNLP::NON_LINEAR) {
       if (rowLower[i] > -nlp_infty) {
         //   printf("Lower %g ", rowLower[i]);
         rowLow[ind] = (rowLower[i]);
       } else
         rowLow[ind] = -infty;
       if (rowUpper[i] < nlp_infty) {
         //   printf("Upper %g ", rowUpper[i]);
         rowUp[ind] = (rowUpper[i]);
       } else
         rowUp[ind] = infty;
       ind++;
     }
   
   }
   
   CoinPackedMatrix mat(true, jRow(), jCol(), jValues(), nnz_jac_g);
   mat.setDimensions(m, n); // In case matrix was empty, this should be enough
   
   //remove non-linear constraints
   mat.deleteRows(numNonLinear, nonLinear());
   
   int numcols = nlp.getNumCols();
   vector<double> obj(numcols);
   for (int i = 0; i < numcols; i++)
     obj[i] = 0.;
   
   si.loadProblem(mat, nlp.getColLower(), nlp.getColUpper(), 
                  obj(), rowLow(), rowUp());
   const Bonmin::TMINLP::VariableType* variableType = problem->var_types();
   for (int i = 0; i < n; i++) {
     if ((variableType[i] == TMINLP::BINARY) || (variableType[i]
         == TMINLP::INTEGER))
       si.setInteger(i);
   }
   if (getObj) {
     bool addObjVar = false;
     if (problem->hasLinearObjective()) {
       double zero;
       vector<double> x0(n, 0.);
       problem->eval_f(n, x0(), 1, zero);
       si.setDblParam(OsiObjOffset, -zero);
       //Copy the linear objective and don't create a dummy variable.
       problem->eval_grad_f(n, x, 1, obj());
       si.setObjective(obj());
     } else {
       addObjVar = true;
     }
//.........这里部分代码省略.........
开发者ID:coin-or,项目名称:Bonmin,代码行数:101,代码来源:BonHeuristicInnerApproximation.cpp

示例11: eq


//.........这里部分代码省略.........
        //   -7x1 +  4x2 <= 1
        //     x1, x2 >= 0 and x1, x2 integer
        // Slacks are s1, s2, s3, s4



        //Test that problem is correct
        // Optimal Basis is x1, x2, s3, s4 with tableau
        //    x1            0.25 s1  -0.25 s2             =  0.5
        //           x2     0.25 s1   0.25 s2             =  1
        //                 -2.75 s1   0.75 s2    s3       =  0.5
        //                  0.75 s1  -2.75 s2        s4   =  0.5
        // z=              -0.25 s1  -0.25 s2             =  -1
        // Gomory cut from variable x1 is x2 <= 0.5
        // Can be improved by first pivoting s2 in and s4 out, then s1 in and s3 out
        // to x2 <= 0.25
        {
            int start[2] = {0,4};
            int length[2] = {4,4};
            int rows[8] = {0,1,2,3,0,1,2,3};
            double elements[8] = {2.0,-2.0,7.0,-7.0,2.0,2.0,4.0,4.0};
            CoinPackedMatrix  columnCopy(true,4,2,8,elements,rows,start,length);

            double rowLower[4]={-COIN_DBL_MAX,-COIN_DBL_MAX,
                                -COIN_DBL_MAX,-COIN_DBL_MAX};
            double rowUpper[4]={3.,1.,8.,1.};
            double colLower[2]={0.0,0.0};
            double colUpper[2]={1.0,1.0};
            double obj[2]={-1,-1};
            int intVar[2]={0,1};

            OsiSolverInterface  * siP = si->clone();
            siP->loadProblem(columnCopy, colLower, colUpper, obj, rowLower, rowUpper);
            siP->setInteger(intVar,2);
            CglLandP test;
            test.setLogLevel(2);
            test.parameter().sepSpace = CglLandP::Full;
            siP->resolve();
            // Test generateCuts method
            {
                OsiCuts cuts;
                test.generateCuts(*siP,cuts);
                cuts.printCuts();
                assert(cuts.sizeRowCuts()==1);
                OsiRowCut aCut = cuts.rowCut(0);
                assert(eq(aCut.lb(), -.0714286));
                CoinPackedVector row = aCut.row();
                if (row.getNumElements() == 1)
                {
                    assert(row.getIndices()[0]==1);
                    assert(eq(row.getElements()[0], -4*.0714286));
                }
                else if (row.getNumElements() == 2)
                {
                    assert(row.getIndices()[0]==0);
                    assert(eq(row.getElements()[0], 0.));
                    assert(row.getIndices()[1]==1);
                    assert(eq(row.getElements()[1], -1));
                }
                OsiSolverInterface::ApplyCutsReturnCode rc = siP->applyCuts(cuts);

                siP->resolve();
            }
            if (0)
            {
                OsiCuts cuts;
开发者ID:Alihina,项目名称:ogdf,代码行数:67,代码来源:CglLandPTest.cpp

示例12: eq


//.........这里部分代码省略.........
      CoinBigIndex * start = new CoinBigIndex [ncol+1];
      memset(start,0,ncol*sizeof(CoinBigIndex ));
      int * row = new int[nel];
      int i;
      for (i=0;i<nel;i++) {
	x=fscanf(fp,"%d %lg %lg",col1+i,el1+i,sol1+i);
	if (x<=0)
	  throw("bad fscanf");
	printf("[%d, e=%g, v=%g] ",col1[i],el1[i],sol1[i]);
	start[col1[i]]=1;
	row[i]=0;
      }
      printf("\n");
      // Setup
      OsiSolverInterface  * siP = baseSiP->clone();
      
      double lo=-1.0e30;
      double * upper = new double[ncol];
      start[ncol]=nel;
      int last=0;
      for (i=0;i<ncol;i++) {
	upper[i]=1.0;
	int marked=start[i];
	start[i]=last;
	if (marked)
	  last++;
      }
      siP->loadProblem(ncol,1,start,row,el1,NULL,upper,NULL,&lo,&up);
      // use upper for solution
      memset(upper,0,ncol*sizeof(double));
      for (i=0;i<nel;i++) {
	int icol=col1[i];
	upper[icol]=sol1[i];
	siP->setInteger(icol);
      }
      siP->setColSolution(upper);
      delete [] sol1;
      delete [] el1;
      delete [] col1;
      delete [] start;
      delete [] row;
      delete [] upper;
      CglKnapsackCover kccg;
      
      OsiCuts cuts;    
      
      // Test generateCuts method
      kccg.generateCuts(*siP,cuts);
      // print out and compare to known cuts
      int numberCuts = cuts.sizeRowCuts();
      if (numberCuts) {
	for (i=0;i<numberCuts;i++) {
	  OsiRowCut * thisCut = cuts.rowCutPtr(i);
	  int n=thisCut->row().getNumElements();
	  printf("Cut %d has %d entries, rhs %g %g =>",i,n,thisCut->lb(),
		 thisCut->ub());
	  int j;
	  const int * index = thisCut->row().getIndices();
	  const double * element = thisCut->row().getElements();
	  for (j=0;j<n;j++) {
	    printf(" (%d,%g)",index[j],element[j]);
	  }
	  printf("\n");
	}
      }
      fclose(fp);
开发者ID:NealCaffrey989,项目名称:CBC,代码行数:67,代码来源:CglKnapsackCoverTest.cpp

示例13: finalModelX

OsiSolverInterface *
expandKnapsack(CoinModel & model, int * whichColumn, int * knapsackStart,
               int * knapsackRow, int &numberKnapsack,
               CglStored & stored, int logLevel,
               int fixedPriority, int SOSPriority, CoinModel & tightenedModel)
{
    int maxTotal = numberKnapsack;
    // load from coin model
    OsiSolverLink *si = new OsiSolverLink();
    OsiSolverInterface * finalModel = NULL;
    si->setDefaultMeshSize(0.001);
    // need some relative granularity
    si->setDefaultBound(100.0);
    si->setDefaultMeshSize(0.01);
    si->setDefaultBound(100000.0);
    si->setIntegerPriority(1000);
    si->setBiLinearPriority(10000);
    si->load(model, true, logLevel);
    // get priorities
    const int * priorities = model.priorities();
    int numberColumns = model.numberColumns();
    if (priorities) {
        OsiObject ** objects = si->objects();
        int numberObjects = si->numberObjects();
        for (int iObj = 0; iObj < numberObjects; iObj++) {
            int iColumn = objects[iObj]->columnNumber();
            if (iColumn >= 0 && iColumn < numberColumns) {
#ifndef NDEBUG
                OsiSimpleInteger * obj =
                    dynamic_cast <OsiSimpleInteger *>(objects[iObj]) ;
#endif
                assert (obj);
                int iPriority = priorities[iColumn];
                if (iPriority > 0)
                    objects[iObj]->setPriority(iPriority);
            }
        }
        if (fixedPriority > 0) {
            si->setFixedPriority(fixedPriority);
        }
        if (SOSPriority < 0)
            SOSPriority = 100000;
    }
    CoinModel coinModel = *si->coinModel();
    assert(coinModel.numberRows() > 0);
    tightenedModel = coinModel;
    int numberRows = coinModel.numberRows();
    // Mark variables
    int * whichKnapsack = new int [numberColumns];
    int iRow, iColumn;
    for (iColumn = 0; iColumn < numberColumns; iColumn++)
        whichKnapsack[iColumn] = -1;
    int kRow;
    bool badModel = false;
    // analyze
    if (logLevel > 1) {
        for (iRow = 0; iRow < numberRows; iRow++) {
            /* Just obvious one at first
            positive non unit coefficients
            all integer
            positive rowUpper
            for now - linear (but further down in code may use nonlinear)
            column bounds should be tight
            */
            //double lower = coinModel.getRowLower(iRow);
            double upper = coinModel.getRowUpper(iRow);
            if (upper < 1.0e10) {
                CoinModelLink triple = coinModel.firstInRow(iRow);
                bool possible = true;
                int n = 0;
                int n1 = 0;
                while (triple.column() >= 0) {
                    int iColumn = triple.column();
                    const char *  el = coinModel.getElementAsString(iRow, iColumn);
                    if (!strcmp("Numeric", el)) {
                        if (coinModel.columnLower(iColumn) == coinModel.columnUpper(iColumn)) {
                            triple = coinModel.next(triple);
                            continue; // fixed
                        }
                        double value = coinModel.getElement(iRow, iColumn);
                        if (value < 0.0) {
                            possible = false;
                        } else {
                            n++;
                            if (value == 1.0)
                                n1++;
                            if (coinModel.columnLower(iColumn) < 0.0)
                                possible = false;
                            if (!coinModel.isInteger(iColumn))
                                possible = false;
                            if (whichKnapsack[iColumn] >= 0)
                                possible = false;
                        }
                    } else {
                        possible = false; // non linear
                    }
                    triple = coinModel.next(triple);
                }
                if (n - n1 > 1 && possible) {
                    double lower = coinModel.getRowLower(iRow);
//.........这里部分代码省略.........
开发者ID:coapp-packages,项目名称:coin-cbc,代码行数:101,代码来源:CbcSolverExpandKnapsack.cpp

示例14: cpropagation_preprocess

OsiSolverInterface* cpropagation_preprocess(CPropagation *cp, int nindexes[])
{
    if(cp->varsToFix == 0)
    {
        /* printf("There are no variables to remove from the problem!\n"); */
        return NULL; /* returns a pointer to original solver */
    }

    const double *colLb = problem_vars_lower_bound(cp->problem), *colUb = problem_vars_upper_bound(cp->problem);
    const double *objCoef = problem_vars_obj_coefs(cp->problem);
    const char *ctype = problem_vars_type(cp->problem);

    double sumFixedObj = 0.0; /* stores the sum of objective coefficients of all variables fixed to 1 */

    OsiSolverInterface *preProcSolver = new OsiClpSolverInterface();
    preProcSolver->setIntParam(OsiNameDiscipline, 2);
    preProcSolver->messageHandler()->setLogLevel(0);
    preProcSolver->setHintParam(OsiDoReducePrint,true,OsiHintTry);
    //preProcSolver->setObjName(cp->solver->getObjName());

    for(int i = 0, j = 0; i < problem_num_cols(cp->problem); i++)
    {
        nindexes[i] = -1;
        if(cp->isToFix[i] == UNFIXED)
        {
            preProcSolver->addCol(0, NULL, NULL, colLb[i], colUb[i], objCoef[i]);
            preProcSolver->setColName(j, problem_var_name(cp->problem, i));
            if(problem_var_type(cp->problem, i) == CONTINUOUS)
                preProcSolver->setContinuous(j);
            else 
                preProcSolver->setInteger(j);
            nindexes[i] = j++;
        }
        else if(cp->isToFix[i] == ACTIVATE)
            sumFixedObj += objCoef[i];
    }

    if(fabs(sumFixedObj) > EPS)
    {
        /* adding a variable with cost equals to the sum of all coefficients of variables fixed to 1 */
        preProcSolver->addCol(0, NULL, NULL, 1.0, 1.0, sumFixedObj);
        preProcSolver->setColName(preProcSolver->getNumCols()-1, "sumFixedObj");
        preProcSolver->setInteger(preProcSolver->getNumCols()-1);
    }

    for(int idxRow = 0; idxRow < problem_num_rows(cp->problem); idxRow++)
    {
        const int nElements = problem_row_size(cp->problem, idxRow);
        const int *idxs = problem_row_idxs(cp->problem, idxRow);
        const double *coefs = problem_row_coefs(cp->problem, idxRow);
        vector< int > vidx; vidx.reserve(problem_num_cols(cp->problem));
        vector< double > vcoef; vcoef.reserve(problem_num_cols(cp->problem));
        double activeCoefs = 0.0;

        for(int i = 0; i < nElements; i++)
        {
            if(cp->isToFix[idxs[i]] == UNFIXED)
            {
                assert(nindexes[idxs[i]] >= 0 && nindexes[idxs[i]] < problem_num_cols(cp->problem));
                vidx.push_back(nindexes[idxs[i]]);
                vcoef.push_back(coefs[i]);
            }
            else if(cp->isToFix[idxs[i]] == ACTIVATE)
            	activeCoefs += coefs[i];
        }

        if(!vidx.empty())
        {
        	double rlb, rub;
        	const char sense = problem_row_sense(cp->problem, idxRow);
        	
        	if(sense == 'E')
            {
                rlb = problem_row_rhs(cp->problem, idxRow) - activeCoefs;
                rub = problem_row_rhs(cp->problem, idxRow) - activeCoefs;
            }
        	else if(sense == 'L')
            {
                rlb = preProcSolver->getInfinity();
                rub = problem_row_rhs(cp->problem, idxRow) - activeCoefs;
            }
        	else if(sense == 'G')
            {
                rlb = problem_row_rhs(cp->problem, idxRow) - activeCoefs;
                rub = preProcSolver->getInfinity();
            }
        	else
        	{
        		fprintf(stderr, "Error: invalid type of constraint!\n");
        		exit(EXIT_FAILURE);
        	}

        	preProcSolver->addRow((int)vcoef.size(), &vidx[0], &vcoef[0], rlb, rub);
            preProcSolver->setRowName(idxRow, problem_row_name(cp->problem, idxRow));
        }
	}

    return preProcSolver;
}
开发者ID:h-g-s,项目名称:npsep,代码行数:99,代码来源:constraint_propagation.cpp

示例15: matrix


//.........这里部分代码省略.........
      // Get dual multipliers and build gradient of the lagrangean
      const double * duals = nlp->getRowPrice() + 2 *n;
      vector<double> grad(n, 0); 
      vector<int> indices(n, 0);
      tminlp->eval_grad_f(n, x_sol, false, grad());
      for(int i = 0 ; i < m ; i++){
        if(c_lin[i] == Ipopt::TNLP::LINEAR) continue;
        int nnz;
        tminlp->eval_grad_gi(n, x_sol, false, i, nnz, indices(), NULL);  
        tminlp->eval_grad_gi(n, x_sol, false, i, nnz, NULL, grad());
        for(int k = 0 ; k < nnz ; k++){
          objective[indices[k]] += alpha *duals[i] * grad[k];
        } 
      }
      for(int i = 0 ; i < n ; i++){
         if(variableType[i] != Bonmin::TMINLP::CONTINUOUS)
         objective[i] += alpha * grad[i];
         //if(fabs(objective[i]) < 1e-4) objective[i] = 0;
         else objective[i] = 0;
      }
      std::copy(objective.begin(), objective.end(), std::ostream_iterator<double>(std::cout, " "));
      std::cout<<std::endl;
#endif

      // load the problem to OSI
      OsiSolverInterface *si = mip_->solver();
      assert(si != NULL);
      CoinMessageHandler * handler = model_->messageHandler()->clone();
      si->passInMessageHandler(handler);
      si->messageHandler()->setLogLevel(1);

      si->loadProblem(matrix, model_->solver()->getColLower(), model_->solver()->getColUpper(), objective(), 
                      newRowLower(), newRowUpper());
      si->setInteger(idxIntegers(), static_cast<int>(idxIntegers.size()));
      si->applyCuts(noGoods);

      bool hasFractionnal = true;
      while(hasFractionnal){
        mip_->optimize(DBL_MAX, 0, 60);
        hasFractionnal = false;
#if 0
        bool feasible = false;
        if(mip_->getLastSolution()) {
  	const double* solution = mip_->getLastSolution();
          std::copy(solution, solution + n, newSolution.begin());
  	feasible = true;
  
        }

    if(feasible) {
      // fix the integer variables and solve the NLP
      // also add no good cut
      CoinPackedVector v;
      double lb = 1;
      for (int iColumn=0;iColumn<n;iColumn++) {
	if (variableType[iColumn] != Bonmin::TMINLP::CONTINUOUS) {
	  double value=newSolution[iColumn];
	  if (fabs(floor(value+0.5)-value)>integerTolerance) {
#ifdef DEBUG_BON_HEURISTIC_DIVE_MIP
	    cout<<"It should be infeasible because: "<<endl;
	    cout<<"variable "<<iColumn<<" is not integer"<<endl;
#endif
	    feasible = false;
	    break;
	  }
	  else {
开发者ID:coin-or,项目名称:Bonmin,代码行数:67,代码来源:BonMilpRounding.cpp


注:本文中的OsiSolverInterface::setInteger方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。