当前位置: 首页>>代码示例>>C++>>正文


C++ OsiSolverInterface::setDblParam方法代码示例

本文整理汇总了C++中OsiSolverInterface::setDblParam方法的典型用法代码示例。如果您正苦于以下问题:C++ OsiSolverInterface::setDblParam方法的具体用法?C++ OsiSolverInterface::setDblParam怎么用?C++ OsiSolverInterface::setDblParam使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在OsiSolverInterface的用法示例。


在下文中一共展示了OsiSolverInterface::setDblParam方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: pushCbcOsiDbl

int pushCbcOsiDbl (CoinParam *param)

{
    assert (param != 0) ;

    CbcOsiParam *osiParam = dynamic_cast<CbcOsiParam *>(param) ;
    assert (osiParam != 0) ;

    OsiSolverInterface *osi = osiParam->obj() ;
    assert (osi != 0) ;
    double val = osiParam->dblVal() ;
    CbcOsiParam::CbcOsiParamCode code = osiParam->paramCode() ;

    assert (osi != 0) ;
    /*
      Setup to return nonfatal/fatal error (1/-1) by default, so that all we need
      to do is correct to 0 (no error) if we're successful.
    */
    int retval ;
    if (CoinParamUtils::isInteractive()) {
        retval = 1 ;
    } else {
        retval = -1 ;
    }
    /*
      Translate the parameter code from CbcOsiParamCode into the correct key for
      CbcDblParam.
    */
    OsiDblParam key ;
    switch (code) {
    case CbcOsiParam::PRIMALTOLERANCE: {
        key = OsiPrimalTolerance ;
        break ;
    }
    case CbcOsiParam::DUALTOLERANCE: {
        key = OsiDualTolerance ; ;
        break ;
    }
    case CbcOsiParam::DUALBOUND: {
        key = OsiDualObjectiveLimit ;
        break ;
    }
    default: {
        std::cerr << "pushCbcOsiDblParam: no equivalent OsiDblParam for "
                  << "parameter code `" << code << "'." << std::endl ;
        retval = -1 ;
        break ;
    }
    }

    bool setOK = osi->setDblParam(key, val) ;
    if (setOK == false) {
        retval = -1 ;
    }

    return (retval) ;
}
开发者ID:aykutbulut,项目名称:Cbc,代码行数:57,代码来源:CbcGenOsiParamUtils.cpp

示例2: mat

void 
HeuristicInnerApproximation::extractInnerApproximation(Bonmin::OsiTMINLPInterface & nlp, OsiSolverInterface &si,
  const double * x, bool getObj) {
   printf("************  Start extracting inner approx");
   int n;
   int m;
   int nnz_jac_g;
   int nnz_h_lag;
   Ipopt::TNLP::IndexStyleEnum index_style;
   Bonmin::TMINLP2TNLP * problem = nlp.problem(); 
   //Get problem information
   problem->get_nlp_info(n, m, nnz_jac_g, nnz_h_lag, index_style);
   
   Bonmin::vector<int> jRow(nnz_jac_g);
   Bonmin::vector<int> jCol(nnz_jac_g);
   Bonmin::vector<double> jValues(nnz_jac_g);
   problem->eval_jac_g(n, NULL, 0, m, nnz_jac_g, jRow(), jCol(), NULL);
   if(index_style == Ipopt::TNLP::FORTRAN_STYLE)//put C-style
   {
     for(int i = 0 ; i < nnz_jac_g ; i++){
       jRow[i]--;
       jCol[i]--;
     }
   }
   
   //get Jacobian
   problem->eval_jac_g(n, x, 1, m, nnz_jac_g, NULL, NULL,
       jValues());
   
   Bonmin::vector<double> g(m);
   problem->eval_g(n, x, 1, m, g());
   
   Bonmin::vector<int> nonLinear(m);
   //store non linear constraints (which are to be removed from IA)
   int numNonLinear = 0;
   const double * rowLower = nlp.getRowLower();
   const double * rowUpper = nlp.getRowUpper();
   const double * colLower = nlp.getColLower();
   const double * colUpper = nlp.getColUpper();
   assert(m == nlp.getNumRows());
   double infty = si.getInfinity();
   double nlp_infty = nlp.getInfinity();
   Bonmin::vector<Ipopt::TNLP::LinearityType>  constTypes(m);
   Bonmin::vector<Ipopt::TNLP::LinearityType>  varTypes(n);
   problem->get_constraints_linearity(m, constTypes());
   problem->get_variables_linearity(n, varTypes());
   for (int i = 0; i < m; i++) {
     if (constTypes[i] == Ipopt::TNLP::NON_LINEAR) {
       nonLinear[numNonLinear++] = i;
     }
   }
   Bonmin::vector<double> rowLow(m - numNonLinear);
   Bonmin::vector<double> rowUp(m - numNonLinear);
   int ind = 0;
   for (int i = 0; i < m; i++) {
     if (constTypes[i] != Ipopt::TNLP::NON_LINEAR) {
       if (rowLower[i] > -nlp_infty) {
         //   printf("Lower %g ", rowLower[i]);
         rowLow[ind] = (rowLower[i]);
       } else
         rowLow[ind] = -infty;
       if (rowUpper[i] < nlp_infty) {
         //   printf("Upper %g ", rowUpper[i]);
         rowUp[ind] = (rowUpper[i]);
       } else
         rowUp[ind] = infty;
       ind++;
     }
   
   }
   
   CoinPackedMatrix mat(true, jRow(), jCol(), jValues(), nnz_jac_g);
   mat.setDimensions(m, n); // In case matrix was empty, this should be enough
   
   //remove non-linear constraints
   mat.deleteRows(numNonLinear, nonLinear());
   
   int numcols = nlp.getNumCols();
   Bonmin::vector<double> obj(numcols);
   for (int i = 0; i < numcols; i++)
     obj[i] = 0.;
   
   si.loadProblem(mat, nlp.getColLower(), nlp.getColUpper(), 
                  obj(), rowLow(), rowUp());
   const Bonmin::TMINLP::VariableType* variableType = problem->var_types();
   for (int i = 0; i < n; i++) {
     if ((variableType[i] == Bonmin::TMINLP::BINARY) || (variableType[i] == Bonmin::TMINLP::INTEGER))
       si.setInteger(i);
   }
   if (getObj) {
     bool addObjVar = false;
     if (problem->hasLinearObjective()) {
       double zero;
       Bonmin::vector<double> x0(n, 0.);
       problem->eval_f(n, x0(), 1, zero);
       si.setDblParam(OsiObjOffset, -zero);
       //Copy the linear objective and don't create a dummy variable.
       problem->eval_grad_f(n, x, 1, obj());
       si.setObjective(obj());
     } else {
//.........这里部分代码省略.........
开发者ID:coin-or,项目名称:Bonmin,代码行数:101,代码来源:SepaHeuristicInnerApproximation.cpp

示例3: v

void
CglLandP::generateCuts(const OsiSolverInterface & si, OsiCuts & cs,
                       const CglTreeInfo info )
{
    if ((info.pass == 0) && !info.inTree)
    {
        numrows_ = si.getNumRows();
    }
// scanExtraCuts(cs, si.getColSolution());
    Parameters params = params_;
    params.rhsWeight = numrows_ + 2;

    handler_->message(CUT_GAP, messages_)<<info.pass<<si.getObjValue() <<CoinMessageEol;

    if (info.inTree)   //put lower pivot limit
    {
        params.pivotLimit = std::min(params.pivotLimit, params.pivotLimitInTree);
        params.countMistakenRc = true;
    }
    if (params.timeLimit < 0)
    {
        params.pivotLimit = 0;
    }

    assert(si.basisIsAvailable());


#ifdef APPEND_ROW
    OsiSolverInterface * t_si = si.clone();
    if (params.modularize)
    {
        int new_idx = si.getNumCols();
        int v_idx[1] = {new_idx};
        double v_val[1] = {-1};
        CoinPackedVector v(1, v_idx, v_val, false);
        t_si->addCol(CoinPackedVector(), 0, 1, 0);
        t_si->setInteger(new_idx);
        t_si->addRow(v,0, 0);
        t_si->resolve();
    }
#else
    const OsiSolverInterface * t_si = &si;
#endif

    cached_.getData(*t_si);
    CglLandPSimplex landpSi(*t_si, cached_, params, validator_);
    if (params.generateExtraCuts == CglLandP::AllViolatedMigs)
    {
        landpSi.genThisBasisMigs(cached_, params);
    }
    landpSi.setLogLevel(handler_->logLevel());
    int nCut = 0;

    std::vector<int> indices;
    getSortedFractionalIndices(indices,cached_, params);

#ifndef NDEBUG
    int numrows = si.getNumRows();
#endif

#ifdef DO_STAT
    //Get informations on current optimum
    {
        OsiSolverInterface * gapTester = si.clone();
        gapTester->resolve();

        roundsStats_.analyseOptimalBasis(gapTester,info.pass, numrows_);
        delete gapTester;
    }
#endif

    params_.timeLimit += CoinCpuTime();
    CoinRelFltEq eq(1e-04);

    for (unsigned int i = 0; i < indices.size() && nCut < params.maxCutPerRound &&
            nCut < cached_.nBasics_ ; i++)
    {

        //Check for time limit
        int iRow = indices[i];
        assert(iRow < numrows);
        OsiRowCut cut;
        int code=1;
        OsiSolverInterface * ncSi = NULL;

        if (params.pivotLimit != 0)
        {
            ncSi = t_si->clone();
            landpSi.setSi(ncSi);
            ncSi->setDblParam(OsiDualObjectiveLimit, COIN_DBL_MAX);
            ncSi->messageHandler()->setLogLevel(0);
        }

        int generated = 0;
        if (params.pivotLimit == 0)
        {
            generated = landpSi.generateMig(iRow, cut, params);
        }
        else
        {
//.........这里部分代码省略.........
开发者ID:FreeScienceCommunity,项目名称:Cgl,代码行数:101,代码来源:CglLandP.cpp

示例4: branch_info

  /// OaDecomposition method
  double
  OaFeasibilityChecker::performOa(OsiCuts & cs, solverManip &lpManip,
      BabInfo * babInfo, double &cutoff,const CglTreeInfo & info) const
  {
    bool isInteger = true;
    bool feasible = 1;

    OsiSolverInterface * lp = lpManip.si();
    OsiBranchingInformation branch_info(lp,false);
    //int numcols = lp->getNumCols();
    double milpBound = -COIN_DBL_MAX;
    int numberPasses = 0;
    double * nlpSol =  NULL;
    int numberCutsBefore = cs.sizeRowCuts();
   
    while (isInteger && feasible ) {
      numberPasses++;

      //setup the nlp

      //Fix the variable which have to be fixed, after having saved the bounds
      double * colsol = const_cast<double *>(lp->getColSolution());
      branch_info.solution_ = colsol;
      fixIntegers(*nlp_,branch_info, parameters_.cbcIntegerTolerance_,objects_, nObjects_);


      //Now solve the NLP get the cuts, and intall them in the local LP
      nlp_->resolve(txt_id);
      if (post_nlp_solve(babInfo, cutoff)) {
        //nlp solved and feasible
        // Update the cutoff
        double ub = nlp_->getObjValue();
        cutoff = ub > 0 ? ub *(1 - parameters_.cbcCutoffIncrement_) : ub*(1 + parameters_.cbcCutoffIncrement_);
        // Update the lp solver cutoff
        lp->setDblParam(OsiDualObjectiveLimit, cutoff);
      }
      // Get the cuts outer approximation at the current point

      nlpSol = const_cast<double *>(nlp_->getColSolution());

      const double * toCut = (parameter().addOnlyViolated_)?
                             colsol:NULL;
      if(cut_count_ <= maximum_oa_cuts_ && type_ == OA)
        nlp_->getOuterApproximation(cs, nlpSol, 1, toCut,
                                    true);
      else {//if (type_ == Benders)
        nlp_->getBendersCut(cs, parameter().global_);
      }
      if(pol_ == DetectCycles)
        nlp_->getBendersCut(savedCuts_, parameter().global_);

      int numberCuts = cs.sizeRowCuts() - numberCutsBefore;
      cut_count_ += numberCuts;
      if (numberCuts > 0)
        installCuts(*lp, cs, numberCuts);

      lp->resolve();
      double objvalue = lp->getObjValue();
      //milpBound = max(milpBound, lp->getObjValue());
      feasible = (lp->isProvenOptimal() &&
          !lp->isDualObjectiveLimitReached() && (objvalue<cutoff)) ;
      //if value of integers are unchanged then we have to get out
      bool changed = true;//if lp is infeasible we don't have to check anything
      isInteger = 0;
      //	  if(!fixed)//fathom on bounds
      //           milpBound = 1e200;
      if (feasible) {
        changed = isDifferentOnIntegers(*nlp_, objects_, nObjects_,
                                        0.1,
                                        nlp_->getColSolution(), lp->getColSolution());
      }
      if (changed) {
       branch_info.solution_ = lp->getColSolution();
       isInteger = integerFeasible(*lp,branch_info, parameters_.cbcIntegerTolerance_,
                                     objects_, nObjects_);
      }
      else {
        isInteger = 0;
        //	  if(!fixed)//fathom on bounds
         milpBound = 1e200;
      }
#ifdef OA_DEBUG
      printf("Obj value after cuts %g, %d rows\n",lp->getObjValue(),
          numberCuts) ;
#endif
    }
    int num_cuts_now = cs.sizeRowCuts();
    if(pol_ == KeepAll){
      for(int i = numberCutsBefore ; i < num_cuts_now ; i++){
        cs.rowCut(i).setEffectiveness(99.9e99);
      }
    }

#ifdef OA_DEBUG
    debug_.printEndOfProcedureDebugMessage(cs, true, cutoff, milpBound, isInteger, feasible, std::cout);
    std::cout<<"milpBound found: "<<milpBound<<std::endl;
#endif
    return milpBound;
  }
开发者ID:coin-or,项目名称:Bonmin,代码行数:100,代码来源:BonOaFeasChecker.cpp

示例5: mat

void 
HeuristicInnerApproximation::extractInnerApproximation(OsiTMINLPInterface & nlp, OsiSolverInterface &si,
                                                       const double * x, bool getObj) {
   int n;
   int m;
   int nnz_jac_g;
   int nnz_h_lag;
   Ipopt::TNLP::IndexStyleEnum index_style;
   TMINLP2TNLP * problem = nlp.problem(); 
   //Get problem information
   problem->get_nlp_info(n, m, nnz_jac_g, nnz_h_lag, index_style);
   
   vector<int> jRow(nnz_jac_g);
   vector<int> jCol(nnz_jac_g);
   vector<double> jValues(nnz_jac_g);
   problem->eval_jac_g(n, NULL, 0, m, nnz_jac_g, jRow(), jCol(), NULL);
   if(index_style == Ipopt::TNLP::FORTRAN_STYLE)//put C-style
   {
     for(int i = 0 ; i < nnz_jac_g ; i++){
       jRow[i]--;
       jCol[i]--;
     }
   }
   
   //get Jacobian
   problem->eval_jac_g(n, x, 1, m, nnz_jac_g, NULL, NULL,
       jValues());
   
   vector<double> g(m);
   problem->eval_g(n, x, 1, m, g());
   
   vector<int> nonLinear(m);
   //store non linear constraints (which are to be removed from IA)
   int numNonLinear = 0;
   const double * rowLower = nlp.getRowLower();
   const double * rowUpper = nlp.getRowUpper();
   const double * colLower = nlp.getColLower();
   const double * colUpper = nlp.getColUpper();
   assert(m == nlp.getNumRows());
   double infty = si.getInfinity();
   double nlp_infty = nlp.getInfinity();
   vector<Ipopt::TNLP::LinearityType>  constTypes(m);
   problem->get_constraints_linearity(m, constTypes());
   for (int i = 0; i < m; i++) {
     if (constTypes[i] == Ipopt::TNLP::NON_LINEAR) {
       nonLinear[numNonLinear++] = i;
     }
   }
   vector<double> rowLow(m - numNonLinear);
   vector<double> rowUp(m - numNonLinear);
   int ind = 0;
   for (int i = 0; i < m; i++) {
     if (constTypes[i] != Ipopt::TNLP::NON_LINEAR) {
       if (rowLower[i] > -nlp_infty) {
         //   printf("Lower %g ", rowLower[i]);
         rowLow[ind] = (rowLower[i]);
       } else
         rowLow[ind] = -infty;
       if (rowUpper[i] < nlp_infty) {
         //   printf("Upper %g ", rowUpper[i]);
         rowUp[ind] = (rowUpper[i]);
       } else
         rowUp[ind] = infty;
       ind++;
     }
   
   }
   
   CoinPackedMatrix mat(true, jRow(), jCol(), jValues(), nnz_jac_g);
   mat.setDimensions(m, n); // In case matrix was empty, this should be enough
   
   //remove non-linear constraints
   mat.deleteRows(numNonLinear, nonLinear());
   
   int numcols = nlp.getNumCols();
   vector<double> obj(numcols);
   for (int i = 0; i < numcols; i++)
     obj[i] = 0.;
   
   si.loadProblem(mat, nlp.getColLower(), nlp.getColUpper(), 
                  obj(), rowLow(), rowUp());
   const Bonmin::TMINLP::VariableType* variableType = problem->var_types();
   for (int i = 0; i < n; i++) {
     if ((variableType[i] == TMINLP::BINARY) || (variableType[i]
         == TMINLP::INTEGER))
       si.setInteger(i);
   }
   if (getObj) {
     bool addObjVar = false;
     if (problem->hasLinearObjective()) {
       double zero;
       vector<double> x0(n, 0.);
       problem->eval_f(n, x0(), 1, zero);
       si.setDblParam(OsiObjOffset, -zero);
       //Copy the linear objective and don't create a dummy variable.
       problem->eval_grad_f(n, x, 1, obj());
       si.setObjective(obj());
     } else {
       addObjVar = true;
     }
//.........这里部分代码省略.........
开发者ID:coin-or,项目名称:Bonmin,代码行数:101,代码来源:BonHeuristicInnerApproximation.cpp

示例6: finalModelX


//.........这里部分代码省略.........
                        for (int j = buildStart[iColumn]; j < buildStart[iColumn+1]; j++) {
                            int jRow = buildRow[j];
                            jRow = lookupRow[jRow];
                            assert (jRow >= 0 && jRow < nRow);
                            buildRow[j] = jRow;
                        }
                    }
                    finalModel->addCols(nCreate, buildStart, buildRow, buildElement, NULL, NULL, buildObj);
                    int numberFinal = finalModel->getNumCols();
                    for (iColumn = numberOther; iColumn < numberFinal; iColumn++) {
                        if (markKnapsack[iKnapsack] < 0) {
                            finalModel->setColUpper(iColumn, maxCoefficient);
                            finalModel->setInteger(iColumn);
                        } else {
                            finalModel->setColUpper(iColumn, maxCoefficient + 1.0);
                            finalModel->setInteger(iColumn);
                        }
                        OsiSimpleInteger * sosObject = new OsiSimpleInteger(finalModel, iColumn);
                        sosObject->setPriority(1000000);
                        object[nObj++] = sosObject;
                        buildRow[iColumn-numberOther] = iColumn;
                        buildElement[iColumn-numberOther] = 1.0;
                    }
                    if (markKnapsack[iKnapsack] < 0) {
                        // convexity row
                        finalModel->addRow(numberFinal - numberOther, buildRow, buildElement, 1.0, 1.0);
                    } else {
                        int iColumn = markKnapsack[iKnapsack];
                        int n = numberFinal - numberOther;
                        buildRow[n] = iColumn;
                        buildElement[n++] = -fabs(coefficient[iKnapsack]);
                        // convexity row (sort of)
                        finalModel->addRow(n, buildRow, buildElement, 0.0, 0.0);
                        OsiSOS * sosObject = new OsiSOS(finalModel, n - 1, buildRow, NULL, 1);
                        sosObject->setPriority(iKnapsack + SOSPriority);
                        // Say not integral even if is (switch off heuristics)
                        sosObject->setIntegerValued(false);
                        object[nSOS++] = sosObject;
                    }
                    numberOther = numberFinal;
                }
                finalModel->addObjects(nObj, object);
                for (iKnapsack = 0; iKnapsack < nObj; iKnapsack++)
                    delete object[iKnapsack];
                delete [] object;
                // Can we move any rows to cuts
                const int * cutMarker = coinModel.cutMarker();
                if (cutMarker && 0) {
                    printf("AMPL CUTS OFF until global cuts fixed\n");
                    cutMarker = NULL;
                }
                if (cutMarker) {
                    // Row copy
                    const CoinPackedMatrix * matrixByRow = finalModel->getMatrixByRow();
                    const double * elementByRow = matrixByRow->getElements();
                    const int * column = matrixByRow->getIndices();
                    const CoinBigIndex * rowStart = matrixByRow->getVectorStarts();
                    const int * rowLength = matrixByRow->getVectorLengths();

                    const double * rowLower = finalModel->getRowLower();
                    const double * rowUpper = finalModel->getRowUpper();
                    int nDelete = 0;
                    for (iRow = 0; iRow < numberRows; iRow++) {
                        if (cutMarker[iRow] && lookupRow[iRow] >= 0) {
                            int jRow = lookupRow[iRow];
                            whichRow[nDelete++] = jRow;
                            int start = rowStart[jRow];
                            stored.addCut(rowLower[jRow], rowUpper[jRow],
                                          rowLength[jRow], column + start, elementByRow + start);
                        }
                    }
                    finalModel->deleteRows(nDelete, whichRow);
                }
                knapsackStart[numberKnapsack] = finalModel->getNumCols();
                delete [] buildObj;
                delete [] buildElement;
                delete [] buildStart;
                delete [] buildRow;
                finalModel->writeMps("full");
            }
        }
    }
    delete [] whichKnapsack;
    delete [] markRow;
    delete [] markKnapsack;
    delete [] coefficient;
    delete [] linear;
    delete [] whichRow;
    delete [] lookupRow;
    delete si;
    si = NULL;
    if (!badModel && finalModel) {
        finalModel->setDblParam(OsiObjOffset, coinModel.objectiveOffset());
        return finalModel;
    } else {
        delete finalModel;
        printf("can't make knapsacks - did you set fixedPriority (extra1)\n");
        return NULL;
    }
}
开发者ID:coapp-packages,项目名称:coin-cbc,代码行数:101,代码来源:CbcSolverExpandKnapsack.cpp


注:本文中的OsiSolverInterface::setDblParam方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。