当前位置: 首页>>代码示例>>C++>>正文


C++ Net::initDeltaRBM方法代码示例

本文整理汇总了C++中Net::initDeltaRBM方法的典型用法代码示例。如果您正苦于以下问题:C++ Net::initDeltaRBM方法的具体用法?C++ Net::initDeltaRBM怎么用?C++ Net::initDeltaRBM使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Net的用法示例。


在下文中一共展示了Net::initDeltaRBM方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: main

int main(int argc, char** argv){
	double learning_rate;
	int batch_size;
	vector<int> layers;
	string train_fname;
	int max_epoch;
	float valid_ratio=0.1;
	string output_model;
	string structure;
	Net d;
	Net bestModel;

	//Set parameters
	float early_stop_thres = 0.03;

	//ex: ./run 0.01 5-4-3 300 train_file_name output_model_name model_name
	if(argc < 7){
		printf("Usage:\n");
		printf("./train learning_rate(0.01) batch_size(10) structure(5-4-3) max_epoch(100) train_file output_model [load_model]\n");
		return 0;
	}else{
		learning_rate = atof(argv[1]);
		batch_size = atoi(argv[2]);
		string lyr(argv[3]);
		structure = lyr.c_str();
		vector<string> x = split(lyr,"-");
		for(int i=0;i<x.size();i++){
			layers.push_back(atoi(x[i].c_str()));
		}
		max_epoch = atoi(argv[4]);
		train_fname.assign(argv[5]);
		output_model.assign(argv[6]);
	}

	//Initialize neural network
	srand(time(NULL));
	if(argc == 7){
		d.load_model(layers);
	}else if(argc == 8){
		string m_name(argv[7]);
		d.load_model(m_name);
	}else{
		printf("wrong parameters\n");
		return 0;
	}
	d.learning_rate = learning_rate;
	d.batch_size = batch_size;


	//Loading data
	puts("Loading training data...");
	d.load_train_data(train_fname,d.data,d.label,d.index);
	vector<int> valid_index(d.index.begin(), d.index.begin()+d.index.size()*valid_ratio);
	vector<int> train_index(d.index.begin()+d.index.size()*valid_ratio, d.index.end());

	//Pre-training
	for (int layer = 0; layer < layers.size() - 1; layer++)
	{
		d.initDeltaRBM(layer);
		for (int epoch = 0; epoch<max_epoch; epoch++){
			random_shuffle(train_index.begin(), train_index.end());
			int j = 0;
			for (vector<int>::iterator it = train_index.begin(); it != train_index.end(); ++it, ++j){
				d.gibbSample(layer, d.data[*it]);
				if ((j % d.batch_size == 0) && j != 0)
					d.updateRBM(layer);
			}
		}
	}

	//Training
	puts("Start training...");
	float best_error_rate = 1;
	int flat_count = 0;
	for(int epoch=0;epoch<max_epoch;epoch++){
		random_shuffle(train_index.begin(), train_index.end());
		int j=0;
		for(vector<int>::iterator it=train_index.begin();it!=train_index.end();++it,++j){
			mat y = zeros<mat>(layers.back(),1);
			d.feedforward(d.data[*it]);
			y(d.label[*it],0) = 1;
			d.backprop(y);
			if((j % d.batch_size == 0) && j != 0)
				d.update();
		}
		float train_err = d.report_error_rate(d.data,d.label, train_index);
		float valid_err = d.report_error_rate(d.data,d.label, valid_index);

		printf("epoch %d\ttrain err:%f\tvalid err:%f\n", epoch,train_err,valid_err);
		d.save_model(output_model, structure);

		if (valid_err < best_error_rate)
		{
			best_error_rate = valid_err;
			bestModel = d;
		}
		
		if (valid_err - best_error_rate > early_stop_thres)
		{
			bestModel.save_model(output_model, structure);
//.........这里部分代码省略.........
开发者ID:bingo4508,项目名称:Deep-Learning,代码行数:101,代码来源:train.cpp


注:本文中的Net::initDeltaRBM方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。