本文整理汇总了C++中Net::getLayerNames方法的典型用法代码示例。如果您正苦于以下问题:C++ Net::getLayerNames方法的具体用法?C++ Net::getLayerNames怎么用?C++ Net::getLayerNames使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Net
的用法示例。
在下文中一共展示了Net::getLayerNames方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: runTorchNet
static void runTorchNet(String prefix, int targetId = DNN_TARGET_CPU, String outLayerName = "",
bool check2ndBlob = false, bool isBinary = false)
{
String suffix = (isBinary) ? ".dat" : ".txt";
Net net = readNetFromTorch(_tf(prefix + "_net" + suffix), isBinary);
ASSERT_FALSE(net.empty());
net.setPreferableBackend(DNN_BACKEND_DEFAULT);
net.setPreferableTarget(targetId);
Mat inp, outRef;
ASSERT_NO_THROW( inp = readTorchBlob(_tf(prefix + "_input" + suffix), isBinary) );
ASSERT_NO_THROW( outRef = readTorchBlob(_tf(prefix + "_output" + suffix), isBinary) );
if (outLayerName.empty())
outLayerName = net.getLayerNames().back();
net.setInput(inp, "0");
std::vector<Mat> outBlobs;
net.forward(outBlobs, outLayerName);
normAssert(outRef, outBlobs[0]);
if (check2ndBlob)
{
Mat out2 = outBlobs[1];
Mat ref2 = readTorchBlob(_tf(prefix + "_output_2" + suffix), isBinary);
normAssert(out2, ref2);
}
}
示例2: runTorchNet
void runTorchNet(const String& prefix, String outLayerName = "",
bool check2ndBlob = false, bool isBinary = false,
double l1 = 0.0, double lInf = 0.0)
{
String suffix = (isBinary) ? ".dat" : ".txt";
Mat inp, outRef;
ASSERT_NO_THROW( inp = readTorchBlob(_tf(prefix + "_input" + suffix), isBinary) );
ASSERT_NO_THROW( outRef = readTorchBlob(_tf(prefix + "_output" + suffix), isBinary) );
checkBackend(backend, target, &inp, &outRef);
Net net = readNetFromTorch(_tf(prefix + "_net" + suffix), isBinary);
ASSERT_FALSE(net.empty());
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
if (outLayerName.empty())
outLayerName = net.getLayerNames().back();
net.setInput(inp);
std::vector<Mat> outBlobs;
net.forward(outBlobs, outLayerName);
l1 = l1 ? l1 : default_l1;
lInf = lInf ? lInf : default_lInf;
normAssert(outRef, outBlobs[0], "", l1, lInf);
if (check2ndBlob && backend != DNN_BACKEND_INFERENCE_ENGINE)
{
Mat out2 = outBlobs[1];
Mat ref2 = readTorchBlob(_tf(prefix + "_output_2" + suffix), isBinary);
normAssert(out2, ref2, "", l1, lInf);
}
}
示例3: runTorchNet
static void runTorchNet(String prefix, String outLayerName = "",
bool check2ndBlob = false, bool isBinary = false)
{
String suffix = (isBinary) ? ".dat" : ".txt";
Net net;
Ptr<Importer> importer = createTorchImporter(_tf(prefix + "_net" + suffix), isBinary);
ASSERT_TRUE(importer != NULL);
importer->populateNet(net);
Blob inp, outRef;
ASSERT_NO_THROW( inp = readTorchBlob(_tf(prefix + "_input" + suffix), isBinary) );
ASSERT_NO_THROW( outRef = readTorchBlob(_tf(prefix + "_output" + suffix), isBinary) );
net.setBlob(".0", inp);
net.forward();
if (outLayerName.empty())
outLayerName = net.getLayerNames().back();
Blob out = net.getBlob(outLayerName);
normAssert(outRef, out);
if (check2ndBlob)
{
Blob out2 = net.getBlob(outLayerName + ".1");
Blob ref2 = readTorchBlob(_tf(prefix + "_output_2" + suffix), isBinary);
normAssert(out2, ref2);
}
}
示例4: getOutputsNames
static std::vector<String> getOutputsNames(const Net& net)
{
std::vector<String> names;
std::vector<int> outLayers = net.getUnconnectedOutLayers();
std::vector<String> layersNames = net.getLayerNames();
names.resize(outLayers.size());
for (size_t i = 0; i < outLayers.size(); ++i)
names[i] = layersNames[outLayers[i] - 1];
return names;
}
示例5: expectNoFallbacks
void expectNoFallbacks(Net& net)
{
// Check if all the layers are supported with current backend and target.
// Some layers might be fused so their timings equal to zero.
std::vector<double> timings;
net.getPerfProfile(timings);
std::vector<String> names = net.getLayerNames();
CV_Assert(names.size() == timings.size());
for (int i = 0; i < names.size(); ++i)
{
Ptr<dnn::Layer> l = net.getLayer(net.getLayerId(names[i]));
bool fused = !timings[i];
if ((!l->supportBackend(backend) || l->preferableTarget != target) && !fused)
CV_Error(Error::StsNotImplemented, "Layer [" + l->name + "] of type [" +
l->type + "] is expected to has backend implementation");
}
}
示例6: createTorchImporter
TEST(Torch_Importer, ENet_accuracy)
{
Net net;
{
Ptr<Importer> importer = createTorchImporter(_tf("Enet-model-best.net", false));
ASSERT_TRUE(importer != NULL);
importer->populateNet(net);
}
Mat sample = imread(_tf("street.png", false));
cv::cvtColor(sample, sample, cv::COLOR_BGR2RGB);
sample.convertTo(sample, CV_32F, 1/255.0);
dnn::Blob inputBlob = dnn::Blob::fromImages(sample);
net.setBlob("", inputBlob);
net.forward();
dnn::Blob out = net.getBlob(net.getLayerNames().back());
Blob ref = blobFromNPY(_tf("torch_enet_prob.npy", false));
normAssert(ref, out);
}