当前位置: 首页>>代码示例>>C++>>正文


C++ NBEdge::getLaneSpreadFunction方法代码示例

本文整理汇总了C++中NBEdge::getLaneSpreadFunction方法的典型用法代码示例。如果您正苦于以下问题:C++ NBEdge::getLaneSpreadFunction方法的具体用法?C++ NBEdge::getLaneSpreadFunction怎么用?C++ NBEdge::getLaneSpreadFunction使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在NBEdge的用法示例。


在下文中一共展示了NBEdge::getLaneSpreadFunction方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: writeLane

void
NWWriter_SUMO::writeEdge(OutputDevice& into, const NBEdge& e, bool noNames, bool origNames) {
    // write the edge's begin
    into.openTag(SUMO_TAG_EDGE).writeAttr(SUMO_ATTR_ID, e.getID());
    into.writeAttr(SUMO_ATTR_FROM, e.getFromNode()->getID());
    into.writeAttr(SUMO_ATTR_TO, e.getToNode()->getID());
    if (!noNames && e.getStreetName() != "") {
        into.writeAttr(SUMO_ATTR_NAME, StringUtils::escapeXML(e.getStreetName()));
    }
    into.writeAttr(SUMO_ATTR_PRIORITY, e.getPriority());
    if (e.getTypeID() != "") {
        into.writeAttr(SUMO_ATTR_TYPE, e.getTypeID());
    }
    if (e.isMacroscopicConnector()) {
        into.writeAttr(SUMO_ATTR_FUNCTION, EDGEFUNC_CONNECTOR);
    }
    // write the spread type if not default ("right")
    if (e.getLaneSpreadFunction() != LANESPREAD_RIGHT) {
        into.writeAttr(SUMO_ATTR_SPREADTYPE, e.getLaneSpreadFunction());
    }
    if (e.hasLoadedLength()) {
        into.writeAttr(SUMO_ATTR_LENGTH, e.getLoadedLength());
    }
    if (!e.hasDefaultGeometry()) {
        into.writeAttr(SUMO_ATTR_SHAPE, e.getGeometry());
    }
    // write the lanes
    const std::vector<NBEdge::Lane>& lanes = e.getLanes();

    SUMOReal length = e.getLoadedLength();
    if (OptionsCont::getOptions().getBool("no-internal-links") && !e.hasLoadedLength()) {
        // use length to junction center even if a modified geometry was given
        PositionVector geom = e.cutAtIntersection(e.getGeometry());
        geom.push_back_noDoublePos(e.getToNode()->getCenter());
        geom.push_front_noDoublePos(e.getFromNode()->getCenter());
        length = geom.length();
    }
    if (length <= 0) {
        length = POSITION_EPS;
    }
    for (unsigned int i = 0; i < (unsigned int) lanes.size(); i++) {
        const NBEdge::Lane& l = lanes[i];
        writeLane(into, e.getID(), e.getLaneID(i), l.speed,
                  l.permissions, l.preferred, l.endOffset, l.width, l.shape, l.origID,
                  length, i, origNames);
    }
    // close the edge
    into.closeTag();
}
开发者ID:aarongolliver,项目名称:sumo,代码行数:49,代码来源:NWWriter_SUMO.cpp

示例2: writeLane

void
NWWriter_SUMO::writeEdge(OutputDevice& into, const NBEdge& e, bool noNames, bool origNames) {
    // write the edge's begin
    into.openTag(SUMO_TAG_EDGE).writeAttr(SUMO_ATTR_ID, e.getID());
    into.writeAttr(SUMO_ATTR_FROM, e.getFromNode()->getID());
    into.writeAttr(SUMO_ATTR_TO, e.getToNode()->getID());
    if (!noNames && e.getStreetName() != "") {
        into.writeAttr(SUMO_ATTR_NAME, StringUtils::escapeXML(e.getStreetName()));
    }
    into.writeAttr(SUMO_ATTR_PRIORITY, e.getPriority());
    if (e.getTypeName() != "") {
        into.writeAttr(SUMO_ATTR_TYPE, e.getTypeName());
    }
    if (e.isMacroscopicConnector()) {
        into.writeAttr(SUMO_ATTR_FUNCTION, EDGEFUNC_CONNECTOR);
    }
    // write the spread type if not default ("right")
    if (e.getLaneSpreadFunction() != LANESPREAD_RIGHT) {
        into.writeAttr(SUMO_ATTR_SPREADTYPE, e.getLaneSpreadFunction());
    }
    if (e.hasLoadedLength()) {
        into.writeAttr(SUMO_ATTR_LENGTH, e.getLoadedLength());
    }
    if (!e.hasDefaultGeometry()) {
        into.writeAttr(SUMO_ATTR_SHAPE, e.getGeometry());
    }
    // write the lanes
    const std::vector<NBEdge::Lane>& lanes = e.getLanes();
    SUMOReal length = e.getLoadedLength();
    if (length <= 0) {
        length = (SUMOReal) .1;
    }
    for (unsigned int i = 0; i < (unsigned int) lanes.size(); i++) {
        writeLane(into, e.getID(), e.getLaneID(i), lanes[i], length, i, origNames);
    }
    // close the edge
    into.closeTag();
}
开发者ID:rudhir-upretee,项目名称:Sumo17_With_Netsim,代码行数:38,代码来源:NWWriter_SUMO.cpp

示例3: catch


//.........这里部分代码省略.........
                (*i).gpos = e->getGeometry().positionAtLengthPosition((*i).pos);
                sort((*i).lanes.begin(), (*i).lanes.end());
                noLanesMax = MAX2(noLanesMax, (unsigned int)(*i).lanes.size());
            }
            // split the edge
            std::vector<int> currLanes;
            for (unsigned int l = 0; l < e->getNumLanes(); ++l) {
                currLanes.push_back(l);
            }
            std::string edgeid = e->getID();
            SUMOReal seen = 0;
            for (i = mySplits.begin(); i != mySplits.end(); ++i) {
                const Split& exp = *i;
                assert(exp.lanes.size() != 0);
                if (exp.pos > 0 && e->getGeometry().length() + seen > exp.pos && exp.pos > seen) {
                    std::string nid = edgeid + "." +  toString(exp.nameid);
                    NBNode* rn = new NBNode(nid, exp.gpos);
                    if (myNodeCont.insert(rn)) {
                        //  split the edge
                        std::string nid = myCurrentID + "." +  toString(exp.nameid);
                        std::string pid = e->getID();
                        myEdgeCont.splitAt(myDistrictCont, e, exp.pos - seen, rn,
                                           pid, nid, e->getNumLanes(), (unsigned int) exp.lanes.size());
                        seen = exp.pos;
                        std::vector<int> newLanes = exp.lanes;
                        NBEdge* pe = myEdgeCont.retrieve(pid);
                        NBEdge* ne = myEdgeCont.retrieve(nid);
                        // reconnect lanes
                        pe->invalidateConnections(true);
                        //  new on right
                        unsigned int rightMostP = currLanes[0];
                        unsigned int rightMostN = newLanes[0];
                        for (int l = 0; l < (int) rightMostP - (int) rightMostN; ++l) {
                            pe->addLane2LaneConnection(0, ne, l, NBEdge::L2L_VALIDATED, true);
                        }
                        //  new on left
                        unsigned int leftMostP = currLanes.back();
                        unsigned int leftMostN = newLanes.back();
                        for (int l = 0; l < (int) leftMostN - (int) leftMostP; ++l) {
                            pe->addLane2LaneConnection(pe->getNumLanes() - 1, ne, leftMostN - l - rightMostN, NBEdge::L2L_VALIDATED, true);
                        }
                        //  all other connected
                        for (unsigned int l = 0; l < noLanesMax; ++l) {
                            if (find(currLanes.begin(), currLanes.end(), l) == currLanes.end()) {
                                continue;
                            }
                            if (find(newLanes.begin(), newLanes.end(), l) == newLanes.end()) {
                                continue;
                            }
                            pe->addLane2LaneConnection(l - rightMostP, ne, l - rightMostN, NBEdge::L2L_VALIDATED, true);
                        }
                        // move to next
                        e = ne;
                        currLanes = newLanes;
                    } else {
                        WRITE_WARNING("Error on parsing a split (edge '" + myCurrentID + "').");
                    }
                }  else if (exp.pos == 0) {
                    if (e->getNumLanes() < exp.lanes.size()) {
                        e->incLaneNo((int) exp.lanes.size() - e->getNumLanes());
                    } else {
                        e->decLaneNo(e->getNumLanes() - (int) exp.lanes.size());
                    }
                    currLanes = exp.lanes;
                } else {
                    WRITE_WARNING("Split at '" + toString(exp.pos) + "' lies beyond the edge's length (edge '" + myCurrentID + "').");
                }
            }
            // patch lane offsets
            e = myEdgeCont.retrieve(edgeid);
            i = mySplits.begin();
            if ((*i).pos != 0) {
                e = e->getToNode()->getOutgoingEdges()[0];
            }
            for (; i != mySplits.end(); ++i) {
                unsigned int maxLeft = (*i).lanes.back();
                SUMOReal offset = 0;
                if (maxLeft < noLanesMax) {
                    if (e->getLaneSpreadFunction() == LANESPREAD_RIGHT) {
                        offset = SUMO_const_laneWidthAndOffset * (noLanesMax - 1 - maxLeft);
                    } else {
                        offset = SUMO_const_halfLaneAndOffset * (noLanesMax - 1 - maxLeft);
                    }
                }
                unsigned int maxRight = (*i).lanes.front();
                if (maxRight > 0 && e->getLaneSpreadFunction() == LANESPREAD_CENTER) {
                    offset -= SUMO_const_halfLaneAndOffset * maxRight;
                }
                if (offset != 0) {
                    PositionVector g = e->getGeometry();
                    g.move2side(offset);
                    e->setGeometry(g);
                }
                if (e->getToNode()->getOutgoingEdges().size() != 0) {
                    e = e->getToNode()->getOutgoingEdges()[0];
                }
            }
        }
    }
}
开发者ID:rudhir-upretee,项目名称:Sumo17_With_Netsim,代码行数:101,代码来源:NIXMLEdgesHandler.cpp

示例4: catch


//.........这里部分代码省略.........
            }

            std::string edgeid = e->getID();
            SUMOReal seen = 0;
            for (i = mySplits.begin(); i != mySplits.end(); ++i) {
                const Split& exp = *i;
                assert(exp.lanes.size() != 0);
                if (exp.pos > 0 && e->getGeometry().length() + seen > exp.pos && exp.pos > seen) {
                    if (myNodeCont.insert(exp.node)) {
                        myNodeCont.markAsSplit(exp.node);
                        //  split the edge
                        std::string pid = e->getID();
                        myEdgeCont.splitAt(myDistrictCont, e, exp.pos - seen, exp.node,
                                           pid, exp.node->getID(), e->getNumLanes(), (unsigned int) exp.lanes.size(), exp.speed);
                        seen = exp.pos;
                        std::vector<int> newLanes = exp.lanes;
                        NBEdge* pe = myEdgeCont.retrieve(pid);
                        NBEdge* ne = myEdgeCont.retrieve(exp.node->getID());
                        // reconnect lanes
                        pe->invalidateConnections(true);
                        //  new on right
                        unsigned int rightMostP = currLanes[0];
                        unsigned int rightMostN = newLanes[0];
                        for (int l = 0; l < (int) rightMostP - (int) rightMostN; ++l) {
                            pe->addLane2LaneConnection(0, ne, l, NBEdge::L2L_VALIDATED, true);
                        }
                        //  new on left
                        unsigned int leftMostP = currLanes.back();
                        unsigned int leftMostN = newLanes.back();
                        for (int l = 0; l < (int) leftMostN - (int) leftMostP; ++l) {
                            pe->addLane2LaneConnection(pe->getNumLanes() - 1, ne, leftMostN - l - rightMostN, NBEdge::L2L_VALIDATED, true);
                        }
                        //  all other connected
                        for (unsigned int l = 0; l < noLanesMax; ++l) {
                            if (find(currLanes.begin(), currLanes.end(), l) == currLanes.end()) {
                                continue;
                            }
                            if (find(newLanes.begin(), newLanes.end(), l) == newLanes.end()) {
                                continue;
                            }
                            pe->addLane2LaneConnection(l - rightMostP, ne, l - rightMostN, NBEdge::L2L_VALIDATED, true);
                        }
                        // move to next
                        e = ne;
                        currLanes = newLanes;
                    } else {
                        WRITE_WARNING("Error on parsing a split (edge '" + myCurrentID + "').");
                    }
                }  else if (exp.pos == 0) {
                    if (e->getNumLanes() < exp.lanes.size()) {
                        e->incLaneNo((int) exp.lanes.size() - e->getNumLanes());
                    } else {
                        e->decLaneNo(e->getNumLanes() - (int) exp.lanes.size());
                    }
                    currLanes = exp.lanes;
                    // invalidate traffic light definition loaded from a SUMO network
                    // XXX it would be preferable to reconstruct the phase definitions heuristically
                    e->getFromNode()->invalidateTLS(myTLLogicCont);
                } else {
                    WRITE_WARNING("Split at '" + toString(exp.pos) + "' lies beyond the edge's length (edge '" + myCurrentID + "').");
                }
            }
            // patch lane offsets
            e = myEdgeCont.retrieve(edgeid);
            if (mySplits.front().pos != 0) {
                // add a dummy split at the beginning to ensure correct offset
                Split start;
                start.pos = 0;
                for (int lane = 0; lane < (int)e->getNumLanes(); ++lane) {
                    start.lanes.push_back(lane);
                }
                mySplits.insert(mySplits.begin(), start);
            }
            i = mySplits.begin();
            for (; i != mySplits.end(); ++i) {
                unsigned int maxLeft = (*i).lanes.back();
                SUMOReal offset = 0;
                if (maxLeft < noLanesMax) {
                    if (e->getLaneSpreadFunction() == LANESPREAD_RIGHT) {
                        offset = SUMO_const_laneWidthAndOffset * (noLanesMax - 1 - maxLeft);
                    } else {
                        offset = SUMO_const_halfLaneAndOffset * (noLanesMax - 1 - maxLeft);
                    }
                }
                unsigned int maxRight = (*i).lanes.front();
                if (maxRight > 0 && e->getLaneSpreadFunction() == LANESPREAD_CENTER) {
                    offset -= SUMO_const_halfLaneAndOffset * maxRight;
                }
                if (offset != 0) {
                    PositionVector g = e->getGeometry();
                    g.move2side(offset);
                    e->setGeometry(g);
                }
                if (e->getToNode()->getOutgoingEdges().size() != 0) {
                    e = e->getToNode()->getOutgoingEdges()[0];
                }
            }
        }
    }
}
开发者ID:aarongolliver,项目名称:sumo,代码行数:101,代码来源:NIXMLEdgesHandler.cpp

示例5: min

void
NWWriter_DlrNavteq::writeNodesUnsplitted(const OptionsCont& oc, NBNodeCont& nc, NBEdgeCont& ec, std::map<NBEdge*, std::string>& internalNodes) {
    // For "real" nodes we simply use the node id.
    // For internal nodes (geometry vectors describing edge geometry in the parlance of this format)
    // we use the id of the edge and do not bother with
    // compression (each direction gets its own internal node).
    OutputDevice& device = OutputDevice::getDevice(oc.getString("dlr-navteq-output") + "_nodes_unsplitted.txt");
    writeHeader(device, oc);
    const GeoConvHelper& gch = GeoConvHelper::getFinal();
    const bool haveGeo = gch.usingGeoProjection();
    const double geoScale = pow(10.0f, haveGeo ? 5 : 2); // see NIImporter_DlrNavteq::GEO_SCALE
    device.setPrecision(oc.getInt("dlr-navteq.precision"));
    if (!haveGeo) {
        WRITE_WARNING("DlrNavteq node data will be written in (floating point) cartesian coordinates");
    }
    // write format specifier
    device << "# NODE_ID\tIS_BETWEEN_NODE\tamount_of_geocoordinates\tx1\ty1\t[x2 y2  ... xn  yn]\n";
    // write header
    Boundary boundary = gch.getConvBoundary();
    Position min(boundary.xmin(), boundary.ymin());
    Position max(boundary.xmax(), boundary.ymax());
    gch.cartesian2geo(min);
    min.mul(geoScale);
    gch.cartesian2geo(max);
    max.mul(geoScale);
    int multinodes = 0;
    for (std::map<std::string, NBEdge*>::const_iterator i = ec.begin(); i != ec.end(); ++i) {
        if ((*i).second->getGeometry().size() > 2) {
            multinodes++;
        }
    }
    device << "# [xmin_region] " << min.x() << "\n";
    device << "# [xmax_region] " << max.x() << "\n";
    device << "# [ymin_region] " << min.y() << "\n";
    device << "# [ymax_region] " << max.y() << "\n";
    device << "# [elements_multinode] " << multinodes << "\n";
    device << "# [elements_normalnode] " << nc.size() << "\n";
    device << "# [xmin] " << min.x() << "\n";
    device << "# [xmax] " << max.x() << "\n";
    device << "# [ymin] " << min.y() << "\n";
    device << "# [ymax] " << max.y() << "\n";
    // write normal nodes
    for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
        NBNode* n = (*i).second;
        Position pos = n->getPosition();
        gch.cartesian2geo(pos);
        pos.mul(geoScale);
        device << n->getID() << "\t0\t1\t" << pos.x() << "\t" << pos.y() << "\n";
    }
    // write "internal" nodes
    std::vector<std::string> avoid;
    std::set<std::string> reservedNodeIDs;
    const bool numericalIDs = oc.getBool("numerical-ids");
    if (oc.isSet("reserved-ids")) {
        NBHelpers::loadPrefixedIDsFomFile(oc.getString("reserved-ids"), "node:", reservedNodeIDs); // backward compatibility
        NBHelpers::loadPrefixedIDsFomFile(oc.getString("reserved-ids"), "junction:", reservedNodeIDs); // selection format
    }
    if (numericalIDs) {
        avoid = nc.getAllNames();
        std::vector<std::string> avoid2 = ec.getAllNames();
        avoid.insert(avoid.end(), avoid2.begin(), avoid2.end());
        avoid.insert(avoid.end(), reservedNodeIDs.begin(), reservedNodeIDs.end());
    }
    IDSupplier idSupplier("", avoid);
    for (std::map<std::string, NBEdge*>::const_iterator i = ec.begin(); i != ec.end(); ++i) {
        NBEdge* e = (*i).second;
        PositionVector geom = e->getGeometry();
        if (geom.size() > 2) {
            // the import NIImporter_DlrNavteq checks for the presence of a
            // negated edge id to determine spread type. We may need to do some
            // shifting to make this consistent
            const bool hasOppositeID = ec.getOppositeByID(e->getID()) != nullptr;
            if (e->getLaneSpreadFunction() == LANESPREAD_RIGHT && !hasOppositeID) {
                // need to write center-line geometry instead
                try {
                    geom.move2side(e->getTotalWidth() / 2);
                } catch (InvalidArgument& exception) {
                    WRITE_WARNING("Could not reconstruct shape for edge:'" + e->getID() + "' (" + exception.what() + ").");
                }
            } else if (e->getLaneSpreadFunction() == LANESPREAD_CENTER && hasOppositeID) {
                // need to write left-border geometry instead
                try {
                    geom.move2side(-e->getTotalWidth() / 2);
                } catch (InvalidArgument& exception) {
                    WRITE_WARNING("Could not reconstruct shape for edge:'" + e->getID() + "' (" + exception.what() + ").");
                }
            }

            std::string internalNodeID = e->getID();
            if (internalNodeID == UNDEFINED
                    || (nc.retrieve(internalNodeID) != nullptr)
                    || reservedNodeIDs.count(internalNodeID) > 0
               ) {
                // need to invent a new name to avoid clashing with the id of a 'real' node or a reserved name
                if (numericalIDs) {
                    internalNodeID = idSupplier.getNext();
                } else {
                    internalNodeID += "_geometry";
                }
            }
//.........这里部分代码省略.........
开发者ID:behrisch,项目名称:sumo,代码行数:101,代码来源:NWWriter_DlrNavteq.cpp

示例6: toString

void
NWWriter_XML::writeEdgesAndConnections(const OptionsCont& oc, NBNodeCont& nc, NBEdgeCont& ec) {
    const GeoConvHelper& gch = GeoConvHelper::getFinal();
    bool useGeo = oc.exists("proj.plain-geo") && oc.getBool("proj.plain-geo");
    const bool geoAccuracy = useGeo || gch.usingInverseGeoProjection();

    OutputDevice& edevice = OutputDevice::getDevice(oc.getString("plain-output-prefix") + ".edg.xml");
    edevice.writeXMLHeader("edges", NWFrame::MAJOR_VERSION + " xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" xsi:noNamespaceSchemaLocation=\"http://sumo-sim.org/xsd/edges_file.xsd\"");
    OutputDevice& cdevice = OutputDevice::getDevice(oc.getString("plain-output-prefix") + ".con.xml");
    cdevice.writeXMLHeader("connections", NWFrame::MAJOR_VERSION + " xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" xsi:noNamespaceSchemaLocation=\"http://sumo-sim.org/xsd/connections_file.xsd\"");
    bool noNames = !oc.getBool("output.street-names");
    for (std::map<std::string, NBEdge*>::const_iterator i = ec.begin(); i != ec.end(); ++i) {
        // write the edge itself to the edges-files
        NBEdge* e = (*i).second;
        edevice.openTag(SUMO_TAG_EDGE);
        edevice.writeAttr(SUMO_ATTR_ID, e->getID());
        edevice.writeAttr(SUMO_ATTR_FROM, e->getFromNode()->getID());
        edevice.writeAttr(SUMO_ATTR_TO, e->getToNode()->getID());
        if (!noNames && e->getStreetName() != "") {
            edevice.writeAttr(SUMO_ATTR_NAME, StringUtils::escapeXML(e->getStreetName()));
        }
        edevice.writeAttr(SUMO_ATTR_PRIORITY, e->getPriority());
        // write the type if given
        if (e->getTypeID() != "") {
            edevice.writeAttr(SUMO_ATTR_TYPE, e->getTypeID());
        }
        edevice.writeAttr(SUMO_ATTR_NUMLANES, e->getNumLanes());
        if (!e->hasLaneSpecificSpeed()) {
            edevice.writeAttr(SUMO_ATTR_SPEED, e->getSpeed());
        }
        // write non-default geometry
        if (!e->hasDefaultGeometry()) {
            PositionVector geom = e->getGeometry();
            if (useGeo) {
                for (int i = 0; i < (int) geom.size(); i++) {
                    gch.cartesian2geo(geom[i]);
                }
            }
            if (geoAccuracy) {
                edevice.setPrecision(GEO_OUTPUT_ACCURACY);
            }
            edevice.writeAttr(SUMO_ATTR_SHAPE, geom);
            if (geoAccuracy) {
                edevice.setPrecision();
            }
        }
        // write the spread type if not default ("right")
        if (e->getLaneSpreadFunction() != LANESPREAD_RIGHT) {
            edevice.writeAttr(SUMO_ATTR_SPREADTYPE, toString(e->getLaneSpreadFunction()));
        }
        // write the length if it was specified
        if (e->hasLoadedLength()) {
            edevice.writeAttr(SUMO_ATTR_LENGTH, e->getLoadedLength());
        }
        // some attributes can be set by edge default or per lane. Write as default if possible (efficiency)
        if (e->getLaneWidth() != NBEdge::UNSPECIFIED_WIDTH && !e->hasLaneSpecificWidth()) {
            edevice.writeAttr(SUMO_ATTR_WIDTH, e->getLaneWidth());
        }
        if (e->getOffset() != NBEdge::UNSPECIFIED_OFFSET && !e->hasLaneSpecificOffset()) {
            edevice.writeAttr(SUMO_ATTR_OFFSET, e->getOffset());
        }
        if (!e->needsLaneSpecificOutput()) {
            edevice.closeTag();
        } else {
            for (unsigned int i = 0; i < e->getLanes().size(); ++i) {
                const NBEdge::Lane& lane = e->getLanes()[i];
                edevice.openTag(SUMO_TAG_LANE);
                edevice.writeAttr(SUMO_ATTR_INDEX, i);
                // write allowed lanes
                NWWriter_SUMO::writePermissions(edevice, lane.permissions);
                NWWriter_SUMO::writePreferences(edevice, lane.preferred);
                // write other attributes
                if (lane.width != NBEdge::UNSPECIFIED_WIDTH && e->hasLaneSpecificWidth()) {
                    edevice.writeAttr(SUMO_ATTR_WIDTH, lane.width);
                }
                if (lane.offset != NBEdge::UNSPECIFIED_OFFSET && e->hasLaneSpecificOffset()) {
                    edevice.writeAttr(SUMO_ATTR_OFFSET, lane.offset);
                }
                if (e->hasLaneSpecificSpeed()) {
                    edevice.writeAttr(SUMO_ATTR_SPEED, lane.speed);
                }
                edevice.closeTag();
            }
            edevice.closeTag();
        }
        // write this edge's connections to the connections-files
        e->sortOutgoingConnectionsByIndex();
        const std::vector<NBEdge::Connection> connections = e->getConnections();
        for (std::vector<NBEdge::Connection>::const_iterator c = connections.begin(); c != connections.end(); ++c) {
            NWWriter_SUMO::writeConnection(cdevice, *e, *c, false, NWWriter_SUMO::PLAIN);
        }
        if (connections.size() > 0) {
            cdevice << "\n";
        }
    }

    // write loaded prohibitions to the connections-file
    for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
        NWWriter_SUMO::writeProhibitions(cdevice, i->second->getProhibitions());
    }
//.........这里部分代码省略.........
开发者ID:harora,项目名称:ITS,代码行数:101,代码来源:NWWriter_XML.cpp


注:本文中的NBEdge::getLaneSpreadFunction方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。