当前位置: 首页>>代码示例>>C++>>正文


C++ ModelType::setInputDimension方法代码示例

本文整理汇总了C++中ModelType::setInputDimension方法的典型用法代码示例。如果您正苦于以下问题:C++ ModelType::setInputDimension方法的具体用法?C++ ModelType::setInputDimension怎么用?C++ ModelType::setInputDimension使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在ModelType的用法示例。


在下文中一共展示了ModelType::setInputDimension方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: train

//Classification
void CARTTrainer::train(ModelType& model, ClassificationDataset const& dataset){
	//Store the number of input dimensions
	m_inputDimension = inputDimension(dataset);

	//Pass input dimension (i.e., number of attributes) to tree model
	model.setInputDimension(m_inputDimension);

	//Find the largest label, so we know how big the histogram should be
	m_maxLabel = static_cast<unsigned int>(numberOfClasses(dataset))-1;

	// create cross-validation folds
	ClassificationDataset set=dataset;
	CVFolds<ClassificationDataset> folds = createCVSameSizeBalanced(set, m_numberOfFolds);
	//find the best tree for the cv folds
	double bestErrorRate = std::numeric_limits<double>::max();
	CARTClassifier<RealVector>::TreeType bestTree;
	
	//Run through all the cross validation sets
	for (unsigned fold = 0; fold < m_numberOfFolds; ++fold) {
		ClassificationDataset dataTrain = folds.training(fold);
		ClassificationDataset dataTest = folds.validation(fold);
		//Create attribute tables
		//O.K. stores how often label(i) can be found in the dataset
		//O.K. TODO: std::vector<unsigned int> is sufficient
		boost::unordered_map<std::size_t, std::size_t> cAbove = createCountMatrix(dataTrain);
		AttributeTables tables = createAttributeTables(dataTrain.inputs());
		

		//create initial tree for the fold
		CARTClassifier<RealVector>::TreeType tree = buildTree(tables, dataTrain, cAbove, 0);
		model.setTree(tree);
		
		while(true){
			ZeroOneLoss<unsigned int, RealVector> loss;
			double errorRate = loss.eval(dataTest.labels(), model(dataTest.inputs()));
			if(errorRate < bestErrorRate){
				//We have found a subtree that has a smaller error rate when tested!
				bestErrorRate = errorRate;
				bestTree = tree;
			}
                        if(tree.size()!=1) break;
			pruneTree(tree);
			model.setTree(tree);
		}
	}
        SHARK_CHECK(bestTree.size() > 0, "We should never set a tree that is empty.");
	model.setTree(bestTree);

}
开发者ID:jakobht,项目名称:Shark,代码行数:50,代码来源:CARTTrainer.cpp

示例2: train

//Train model with a regression dataset
void CARTTrainer::train(ModelType& model, RegressionDataset const& dataset)
{
	//Store the number of input dimensions
	m_inputDimension = inputDimension(dataset);

	//Pass input dimension (i.e., number of attributes) to tree model
	model.setInputDimension(m_inputDimension);

	//Store the size of the labels
	m_labelDimension = labelDimension(dataset);

	// create cross-validation folds
	RegressionDataset set=dataset;
	CVFolds<RegressionDataset > folds = createCVSameSize(set, m_numberOfFolds);
	double bestErrorRate = std::numeric_limits<double>::max();
	CARTClassifier<RealVector>::TreeType bestTree;
	
	for (unsigned fold = 0; fold < m_numberOfFolds; ++fold){
		//Run through all the cross validation sets
		RegressionDataset dataTrain = folds.training(fold);
		RegressionDataset dataTest = folds.validation(fold);
		std::size_t numTrainElements = dataTrain.numberOfElements();

		AttributeTables tables = createAttributeTables(dataTrain.inputs());

		std::vector < RealVector > labels(numTrainElements);
		boost::copy(dataTrain.labels().elements(),labels.begin());
		//Build tree form this fold
		CARTClassifier<RealVector>::TreeType tree = buildTree(tables, dataTrain, labels, 0, dataTrain.numberOfElements());
		//Add the tree to the model and prune
		model.setTree(tree);
		while(true){
			//evaluate the error of current tree
			SquaredLoss<> loss;
			double error = loss.eval(dataTest.labels(), model(dataTest.inputs()));

			if(error < bestErrorRate){
				//We have found a subtree that has a smaller error rate when tested!
				bestErrorRate = error;
				bestTree = tree;
			}
                        if(tree.size() == 1) break;
			pruneTree(tree);
			model.setTree(tree);
		}
	}
        SHARK_CHECK(bestTree.size() > 0, "We should never set a tree that is empty.");
	model.setTree(bestTree);
}
开发者ID:ghisvail,项目名称:Shark,代码行数:50,代码来源:CARTTrainer.cpp


注:本文中的ModelType::setInputDimension方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。