本文整理汇总了C++中MemoryBuffer::getWidth方法的典型用法代码示例。如果您正苦于以下问题:C++ MemoryBuffer::getWidth方法的具体用法?C++ MemoryBuffer::getWidth怎么用?C++ MemoryBuffer::getWidth使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类MemoryBuffer
的用法示例。
在下文中一共展示了MemoryBuffer::getWidth方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: if
void *FastGaussianBlurValueOperation::initializeTileData(rcti *rect)
{
lockMutex();
if (!this->m_iirgaus) {
MemoryBuffer *newBuf = (MemoryBuffer *)this->m_inputprogram->initializeTileData(rect);
MemoryBuffer *copy = newBuf->duplicate();
FastGaussianBlurOperation::IIR_gauss(copy, this->m_sigma, 0, 3);
if (this->m_overlay == FAST_GAUSS_OVERLAY_MIN) {
float *src = newBuf->getBuffer();
float *dst = copy->getBuffer();
for (int i = copy->getWidth() * copy->getHeight(); i != 0; i--, src += COM_NUM_CHANNELS_VALUE, dst += COM_NUM_CHANNELS_VALUE) {
if (*src < *dst) {
*dst = *src;
}
}
}
else if (this->m_overlay == FAST_GAUSS_OVERLAY_MAX) {
float *src = newBuf->getBuffer();
float *dst = copy->getBuffer();
for (int i = copy->getWidth() * copy->getHeight(); i != 0; i--, src += COM_NUM_CHANNELS_VALUE, dst += COM_NUM_CHANNELS_VALUE) {
if (*src > *dst) {
*dst = *src;
}
}
}
// newBuf->
this->m_iirgaus = copy;
}
unlockMutex();
return this->m_iirgaus;
}
示例2: executeRegion
void WriteBufferOperation::executeRegion(rcti *rect, unsigned int tileNumber)
{
MemoryBuffer *memoryBuffer = this->m_memoryProxy->getBuffer();
float *buffer = memoryBuffer->getBuffer();
if (this->m_input->isComplex()) {
void *data = this->m_input->initializeTileData(rect);
int x1 = rect->xmin;
int y1 = rect->ymin;
int x2 = rect->xmax;
int y2 = rect->ymax;
int x;
int y;
bool breaked = false;
for (y = y1; y < y2 && (!breaked); y++) {
int offset4 = (y * memoryBuffer->getWidth() + x1) * COM_NUMBER_OF_CHANNELS;
for (x = x1; x < x2; x++) {
this->m_input->read(&(buffer[offset4]), x, y, data);
offset4 += COM_NUMBER_OF_CHANNELS;
}
if (isBreaked()) {
breaked = true;
}
}
if (data) {
this->m_input->deinitializeTileData(rect, data);
data = NULL;
}
}
else {
int x1 = rect->xmin;
int y1 = rect->ymin;
int x2 = rect->xmax;
int y2 = rect->ymax;
int x;
int y;
bool breaked = false;
for (y = y1; y < y2 && (!breaked); y++) {
int offset4 = (y * memoryBuffer->getWidth() + x1) * COM_NUMBER_OF_CHANNELS;
for (x = x1; x < x2; x++) {
this->m_input->readSampled(&(buffer[offset4]), x, y, COM_PS_NEAREST);
offset4 += COM_NUMBER_OF_CHANNELS;
}
if (isBreaked()) {
breaked = true;
}
}
}
memoryBuffer->setCreatedState();
}
示例3: executePixel
void GaussianAlphaYBlurOperation::executePixel(float *color, int x, int y, void *data)
{
const bool do_invert = this->m_do_subtract;
MemoryBuffer *inputBuffer = (MemoryBuffer *)data;
float *buffer = inputBuffer->getBuffer();
int bufferwidth = inputBuffer->getWidth();
int bufferstartx = inputBuffer->getRect()->xmin;
int bufferstarty = inputBuffer->getRect()->ymin;
int miny = y - this->m_rad;
int maxy = y + this->m_rad;
int minx = x;
int maxx = x;
miny = max(miny, inputBuffer->getRect()->ymin);
minx = max(minx, inputBuffer->getRect()->xmin);
maxy = min(maxy, inputBuffer->getRect()->ymax);
maxx = min(maxx, inputBuffer->getRect()->xmax);
/* *** this is the main part which is different to 'GaussianYBlurOperation' *** */
int step = getStep();
/* gauss */
float alpha_accum = 0.0f;
float multiplier_accum = 0.0f;
/* dilate */
float value_max = finv_test(buffer[(x * 4) + (y * 4 * bufferwidth)], do_invert); /* init with the current color to avoid unneeded lookups */
float distfacinv_max = 1.0f; /* 0 to 1 */
for (int ny = miny; ny < maxy; ny += step) {
int bufferindex = ((minx - bufferstartx) * 4) + ((ny - bufferstarty) * 4 * bufferwidth);
const int index = (ny - y) + this->m_rad;
float value = finv_test(buffer[bufferindex], do_invert);
float multiplier;
/* gauss */
{
multiplier = this->m_gausstab[index];
alpha_accum += value * multiplier;
multiplier_accum += multiplier;
}
/* dilate - find most extreme color */
if (value > value_max) {
multiplier = this->m_distbuf_inv[index];
value *= multiplier;
if (value > value_max) {
value_max = value;
distfacinv_max = multiplier;
}
}
}
/* blend between the max value and gauss blue - gives nice feather */
const float value_blur = alpha_accum / multiplier_accum;
const float value_final = (value_max * distfacinv_max) + (value_blur * (1.0f - distfacinv_max));
color[0] = finv_test(value_final, do_invert);
}
示例4: executePixel
void GaussianXBlurOperation::executePixel(float output[4], int x, int y, void *data)
{
float color_accum[4] = {0.0f, 0.0f, 0.0f, 0.0f};
float multiplier_accum = 0.0f;
MemoryBuffer *inputBuffer = (MemoryBuffer *)data;
float *buffer = inputBuffer->getBuffer();
int bufferwidth = inputBuffer->getWidth();
int bufferstartx = inputBuffer->getRect()->xmin;
int bufferstarty = inputBuffer->getRect()->ymin;
int miny = y;
int minx = x - this->m_rad;
int maxx = x + this->m_rad;
miny = max(miny, inputBuffer->getRect()->ymin);
minx = max(minx, inputBuffer->getRect()->xmin);
maxx = min(maxx, inputBuffer->getRect()->xmax - 1);
int step = getStep();
int offsetadd = getOffsetAdd();
int bufferindex = ((minx - bufferstartx) * 4) + ((miny - bufferstarty) * 4 * bufferwidth);
for (int nx = minx, index = (minx - x) + this->m_rad; nx <= maxx; nx += step, index += step) {
const float multiplier = this->m_gausstab[index];
madd_v4_v4fl(color_accum, &buffer[bufferindex], multiplier);
multiplier_accum += multiplier;
bufferindex += offsetadd;
}
mul_v4_v4fl(output, color_accum, 1.0f / multiplier_accum);
}
示例5: executePixel
void GaussianYBlurOperation::executePixel(float output[4], int x, int y, void *data)
{
float color_accum[4] = {0.0f, 0.0f, 0.0f, 0.0f};
float multiplier_accum = 0.0f;
MemoryBuffer *inputBuffer = (MemoryBuffer *)data;
float *buffer = inputBuffer->getBuffer();
int bufferwidth = inputBuffer->getWidth();
int bufferstartx = inputBuffer->getRect()->xmin;
int bufferstarty = inputBuffer->getRect()->ymin;
rcti &rect = *inputBuffer->getRect();
int xmin = max_ii(x, rect.xmin);
int ymin = max_ii(y - m_filtersize, rect.ymin);
int ymax = min_ii(y + m_filtersize + 1, rect.ymax);
int index;
int step = getStep();
const int bufferIndexx = ((xmin - bufferstartx) * 4);
for (int ny = ymin; ny < ymax; ny += step) {
index = (ny - y) + this->m_filtersize;
int bufferindex = bufferIndexx + ((ny - bufferstarty) * 4 * bufferwidth);
const float multiplier = this->m_gausstab[index];
madd_v4_v4fl(color_accum, &buffer[bufferindex], multiplier);
multiplier_accum += multiplier;
}
mul_v4_v4fl(output, color_accum, 1.0f / multiplier_accum);
}
示例6: executePixel
void BokehBlurOperation::executePixel(float output[4], int x, int y, void *data)
{
float color_accum[4];
float tempBoundingBox[4];
float bokeh[4];
this->m_inputBoundingBoxReader->readSampled(tempBoundingBox, x, y, COM_PS_NEAREST);
if (tempBoundingBox[0] > 0.0f) {
float multiplier_accum[4] = {0.0f, 0.0f, 0.0f, 0.0f};
MemoryBuffer *inputBuffer = (MemoryBuffer *)data;
float *buffer = inputBuffer->getBuffer();
int bufferwidth = inputBuffer->getWidth();
int bufferstartx = inputBuffer->getRect()->xmin;
int bufferstarty = inputBuffer->getRect()->ymin;
const float max_dim = max(this->getWidth(), this->getHeight());
int pixelSize = this->m_size * max_dim / 100.0f;
zero_v4(color_accum);
if (pixelSize < 2) {
this->m_inputProgram->readSampled(color_accum, x, y, COM_PS_NEAREST);
multiplier_accum[0] = 1.0f;
multiplier_accum[1] = 1.0f;
multiplier_accum[2] = 1.0f;
multiplier_accum[3] = 1.0f;
}
int miny = y - pixelSize;
int maxy = y + pixelSize;
int minx = x - pixelSize;
int maxx = x + pixelSize;
miny = max(miny, inputBuffer->getRect()->ymin);
minx = max(minx, inputBuffer->getRect()->xmin);
maxy = min(maxy, inputBuffer->getRect()->ymax);
maxx = min(maxx, inputBuffer->getRect()->xmax);
int step = getStep();
int offsetadd = getOffsetAdd() * COM_NUM_CHANNELS_COLOR;
float m = this->m_bokehDimension / pixelSize;
for (int ny = miny; ny < maxy; ny += step) {
int bufferindex = ((minx - bufferstartx) * COM_NUM_CHANNELS_COLOR) +
((ny - bufferstarty) * COM_NUM_CHANNELS_COLOR * bufferwidth);
for (int nx = minx; nx < maxx; nx += step) {
float u = this->m_bokehMidX - (nx - x) * m;
float v = this->m_bokehMidY - (ny - y) * m;
this->m_inputBokehProgram->readSampled(bokeh, u, v, COM_PS_NEAREST);
madd_v4_v4v4(color_accum, bokeh, &buffer[bufferindex]);
add_v4_v4(multiplier_accum, bokeh);
bufferindex += offsetadd;
}
}
output[0] = color_accum[0] * (1.0f / multiplier_accum[0]);
output[1] = color_accum[1] * (1.0f / multiplier_accum[1]);
output[2] = color_accum[2] * (1.0f / multiplier_accum[2]);
output[3] = color_accum[3] * (1.0f / multiplier_accum[3]);
}
else {
this->m_inputProgram->readSampled(output, x, y, COM_PS_NEAREST);
}
}
示例7: executePixel
void KeyingClipOperation::executePixel(float *color, int x, int y, void *data)
{
const int delta = this->m_kernelRadius;
const float tolerance = this->m_kernelTolerance;
MemoryBuffer *inputBuffer = (MemoryBuffer *)data;
float *buffer = inputBuffer->getBuffer();
int bufferWidth = inputBuffer->getWidth();
int bufferHeight = inputBuffer->getHeight();
int i, j, count = 0, totalCount = 0;
float value = buffer[(y * bufferWidth + x) * 4];
bool ok = false;
for (i = -delta + 1; i < delta; i++) {
for (j = -delta + 1; j < delta; j++) {
int cx = x + j, cy = y + i;
if (i == 0 && j == 0)
continue;
if (cx >= 0 && cx < bufferWidth && cy >= 0 && cy < bufferHeight) {
int bufferIndex = (cy * bufferWidth + cx) * 4;
float currentValue = buffer[bufferIndex];
if (fabsf(currentValue - value) < tolerance) {
count++;
}
totalCount++;
}
}
}
ok = count >= (float) totalCount * 0.9f;
if (this->m_isEdgeMatte) {
if (ok)
color[0] = 0.0f;
else
color[0] = 1.0f;
}
else {
color[0] = value;
if (ok) {
if (color[0] < this->m_clipBlack)
color[0] = 0.0f;
else if (color[0] >= this->m_clipWhite)
color[0] = 1.0f;
else
color[0] = (color[0] - this->m_clipBlack) / (this->m_clipWhite - this->m_clipBlack);
}
}
}
示例8: executePixel
void GaussianAlphaXBlurOperation::executePixel(float output[4], int x, int y, void *data)
{
const bool do_invert = this->m_do_subtract;
MemoryBuffer *inputBuffer = (MemoryBuffer *)data;
float *buffer = inputBuffer->getBuffer();
int bufferwidth = inputBuffer->getWidth();
int bufferstartx = inputBuffer->getRect()->xmin;
int bufferstarty = inputBuffer->getRect()->ymin;
rcti &rect = *inputBuffer->getRect();
int xmin = max_ii(x - m_filtersize, rect.xmin);
int xmax = min_ii(x + m_filtersize + 1, rect.xmax);
int ymin = max_ii(y, rect.ymin);
/* *** this is the main part which is different to 'GaussianXBlurOperation' *** */
int step = getStep();
int offsetadd = getOffsetAdd();
int bufferindex = ((xmin - bufferstartx) * 4) + ((ymin - bufferstarty) * 4 * bufferwidth);
/* gauss */
float alpha_accum = 0.0f;
float multiplier_accum = 0.0f;
/* dilate */
float value_max = finv_test(buffer[(x * 4) + (y * 4 * bufferwidth)], do_invert); /* init with the current color to avoid unneeded lookups */
float distfacinv_max = 1.0f; /* 0 to 1 */
for (int nx = xmin; nx < xmax; nx += step) {
const int index = (nx - x) + this->m_filtersize;
float value = finv_test(buffer[bufferindex], do_invert);
float multiplier;
/* gauss */
{
multiplier = this->m_gausstab[index];
alpha_accum += value * multiplier;
multiplier_accum += multiplier;
}
/* dilate - find most extreme color */
if (value > value_max) {
multiplier = this->m_distbuf_inv[index];
value *= multiplier;
if (value > value_max) {
value_max = value;
distfacinv_max = multiplier;
}
}
bufferindex += offsetadd;
}
/* blend between the max value and gauss blue - gives nice feather */
const float value_blur = alpha_accum / multiplier_accum;
const float value_final = (value_max * distfacinv_max) + (value_blur * (1.0f - distfacinv_max));
output[0] = finv_test(value_final, do_invert);
}
示例9: FTOCHAR
void *AntiAliasOperation::initializeTileData(rcti *rect)
{
if (this->m_buffer) { return this->m_buffer; }
lockMutex();
if (this->m_buffer == NULL) {
MemoryBuffer *tile = (MemoryBuffer *)this->m_valueReader->initializeTileData(rect);
int size = tile->getHeight() * tile->getWidth();
float *input = tile->getBuffer();
char *valuebuffer = (char *)MEM_mallocN(sizeof(char) * size, __func__);
for (int i = 0; i < size; i++) {
float in = input[i * COM_NUMBER_OF_CHANNELS];
valuebuffer[i] = FTOCHAR(in);
}
antialias_tagbuf(tile->getWidth(), tile->getHeight(), valuebuffer);
this->m_buffer = valuebuffer;
}
unlockMutex();
return this->m_buffer;
}
示例10:
void *ErodeStepOperation::initializeTileData(rcti *rect)
{
if (this->m_cached_buffer != NULL) {
return this->m_cached_buffer;
}
lockMutex();
if (this->m_cached_buffer == NULL) {
MemoryBuffer *buffer = (MemoryBuffer *)this->m_inputProgram->initializeTileData(NULL);
float *rectf = buffer->convertToValueBuffer();
int x, y, i;
float *p;
int bwidth = buffer->getWidth();
int bheight = buffer->getHeight();
for (i = 0; i < this->m_iterations; i++) {
for (y = 0; y < bheight; y++) {
for (x = 0; x < bwidth - 1; x++) {
p = rectf + (bwidth * y + x);
*p = MIN2(*p, *(p + 1));
}
}
for (y = 0; y < bheight; y++) {
for (x = bwidth - 1; x >= 1; x--) {
p = rectf + (bwidth * y + x);
*p = MIN2(*p, *(p - 1));
}
}
for (x = 0; x < bwidth; x++) {
for (y = 0; y < bheight - 1; y++) {
p = rectf + (bwidth * y + x);
*p = MIN2(*p, *(p + bwidth));
}
}
for (x = 0; x < bwidth; x++) {
for (y = bheight - 1; y >= 1; y--) {
p = rectf + (bwidth * y + x);
*p = MIN2(*p, *(p - bwidth));
}
}
}
this->m_cached_buffer = rectf;
}
unlockMutex();
return this->m_cached_buffer;
}
示例11: executePixel
void GaussianXBlurOperation::executePixel(float output[4], int x, int y, void *data)
{
float color_accum[4] = {0.0f, 0.0f, 0.0f, 0.0f};
float multiplier_accum = 0.0f;
MemoryBuffer *inputBuffer = (MemoryBuffer *)data;
float *buffer = inputBuffer->getBuffer();
int bufferwidth = inputBuffer->getWidth();
int bufferstartx = inputBuffer->getRect()->xmin;
int bufferstarty = inputBuffer->getRect()->ymin;
rcti &rect = *inputBuffer->getRect();
int xmin = max_ii(x - m_filtersize, rect.xmin);
int xmax = min_ii(x + m_filtersize + 1, rect.xmax);
int ymin = max_ii(y, rect.ymin);
int step = getStep();
int offsetadd = getOffsetAdd();
int bufferindex = ((xmin - bufferstartx) * 4) + ((ymin - bufferstarty) * 4 * bufferwidth);
#ifdef __SSE2__
__m128 accum_r = _mm_load_ps(color_accum);
for (int nx = xmin, index = (xmin - x) + this->m_filtersize; nx < xmax; nx += step, index += step) {
__m128 reg_a = _mm_load_ps(&buffer[bufferindex]);
reg_a = _mm_mul_ps(reg_a, this->m_gausstab_sse[index]);
accum_r = _mm_add_ps(accum_r, reg_a);
multiplier_accum += this->m_gausstab[index];
bufferindex += offsetadd;
}
_mm_store_ps(color_accum, accum_r);
#else
for (int nx = xmin, index = (xmin - x) + this->m_filtersize; nx < xmax; nx += step, index += step) {
const float multiplier = this->m_gausstab[index];
madd_v4_v4fl(color_accum, &buffer[bufferindex], multiplier);
multiplier_accum += multiplier;
bufferindex += offsetadd;
}
#endif
mul_v4_v4fl(output, color_accum, 1.0f / multiplier_accum);
}
示例12: COM_clAttachMemoryBufferToKernelParameter
cl_mem OpenCLDevice::COM_clAttachMemoryBufferToKernelParameter(cl_kernel kernel,
int parameterIndex,
int offsetIndex,
list<cl_mem> *cleanup,
MemoryBuffer **inputMemoryBuffers,
ReadBufferOperation *reader)
{
cl_int error;
MemoryBuffer *result = reader->getInputMemoryBuffer(inputMemoryBuffers);
const cl_image_format *imageFormat = determineImageFormat(result);
cl_mem clBuffer = clCreateImage2D(this->m_context,
CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
imageFormat,
result->getWidth(),
result->getHeight(),
0,
result->getBuffer(),
&error);
if (error != CL_SUCCESS) {
printf("CLERROR[%d]: %s\n", error, clewErrorString(error));
}
if (error == CL_SUCCESS) {
cleanup->push_back(clBuffer);
}
error = clSetKernelArg(kernel, parameterIndex, sizeof(cl_mem), &clBuffer);
if (error != CL_SUCCESS) {
printf("CLERROR[%d]: %s\n", error, clewErrorString(error));
}
COM_clAttachMemoryBufferOffsetToKernelParameter(kernel, offsetIndex, result);
return clBuffer;
}
示例13: executePixel
void VariableSizeBokehBlurOperation::executePixel(float output[4], int x, int y, void *data)
{
VariableSizeBokehBlurTileData *tileData = (VariableSizeBokehBlurTileData *)data;
MemoryBuffer *inputProgramBuffer = tileData->color;
MemoryBuffer *inputBokehBuffer = tileData->bokeh;
MemoryBuffer *inputSizeBuffer = tileData->size;
float *inputSizeFloatBuffer = inputSizeBuffer->getBuffer();
float *inputProgramFloatBuffer = inputProgramBuffer->getBuffer();
float readColor[4];
float bokeh[4];
float tempSize[4];
float multiplier_accum[4];
float color_accum[4];
const float max_dim = max(m_width, m_height);
const float scalar = this->m_do_size_scale ? (max_dim / 100.0f) : 1.0f;
int maxBlurScalar = tileData->maxBlurScalar;
BLI_assert(inputBokehBuffer->getWidth() == COM_BLUR_BOKEH_PIXELS);
BLI_assert(inputBokehBuffer->getHeight() == COM_BLUR_BOKEH_PIXELS);
#ifdef COM_DEFOCUS_SEARCH
float search[4];
this->m_inputSearchProgram->read(search, x / InverseSearchRadiusOperation::DIVIDER, y / InverseSearchRadiusOperation::DIVIDER, NULL);
int minx = search[0];
int miny = search[1];
int maxx = search[2];
int maxy = search[3];
#else
int minx = max(x - maxBlurScalar, 0);
int miny = max(y - maxBlurScalar, 0);
int maxx = min(x + maxBlurScalar, (int)m_width);
int maxy = min(y + maxBlurScalar, (int)m_height);
#endif
{
inputSizeBuffer->readNoCheck(tempSize, x, y);
inputProgramBuffer->readNoCheck(readColor, x, y);
copy_v4_v4(color_accum, readColor);
copy_v4_fl(multiplier_accum, 1.0f);
float size_center = tempSize[0] * scalar;
const int addXStepValue = QualityStepHelper::getStep();
const int addYStepValue = addXStepValue;
const int addXStepColor = addXStepValue * COM_NUM_CHANNELS_COLOR;
if (size_center > this->m_threshold) {
for (int ny = miny; ny < maxy; ny += addYStepValue) {
float dy = ny - y;
int offsetValueNy = ny * inputSizeBuffer->getWidth();
int offsetValueNxNy = offsetValueNy + (minx);
int offsetColorNxNy = offsetValueNxNy * COM_NUM_CHANNELS_COLOR;
for (int nx = minx; nx < maxx; nx += addXStepValue) {
if (nx != x || ny != y) {
float size = min(inputSizeFloatBuffer[offsetValueNxNy] * scalar, size_center);
if (size > this->m_threshold) {
float dx = nx - x;
if (size > fabsf(dx) && size > fabsf(dy)) {
float uv[2] = {
(float)(COM_BLUR_BOKEH_PIXELS / 2) + (dx / size) * (float)((COM_BLUR_BOKEH_PIXELS / 2) - 1),
(float)(COM_BLUR_BOKEH_PIXELS / 2) + (dy / size) * (float)((COM_BLUR_BOKEH_PIXELS / 2) - 1)};
inputBokehBuffer->read(bokeh, uv[0], uv[1]);
madd_v4_v4v4(color_accum, bokeh, &inputProgramFloatBuffer[offsetColorNxNy]);
add_v4_v4(multiplier_accum, bokeh);
}
}
}
offsetColorNxNy += addXStepColor;
offsetValueNxNy += addXStepValue; }
}
}
output[0] = color_accum[0] / multiplier_accum[0];
output[1] = color_accum[1] / multiplier_accum[1];
output[2] = color_accum[2] / multiplier_accum[2];
output[3] = color_accum[3] / multiplier_accum[3];
/* blend in out values over the threshold, otherwise we get sharp, ugly transitions */
if ((size_center > this->m_threshold) &&
(size_center < this->m_threshold * 2.0f))
{
/* factor from 0-1 */
float fac = (size_center - this->m_threshold) / this->m_threshold;
interp_v4_v4v4(output, readColor, output, fac);
}
}
}
示例14: generateGlare
void GlareGhostOperation::generateGlare(float *data, MemoryBuffer *inputTile, NodeGlare *settings)
{
const int qt = 1 << settings->quality;
const float s1 = 4.0f / (float)qt, s2 = 2.0f * s1;
int x, y, n, p, np;
fRGB c, tc, cm[64];
float sc, isc, u, v, sm, s, t, ofs, scalef[64];
const float cmo = 1.0f - settings->colmod;
MemoryBuffer *gbuf = inputTile->duplicate();
MemoryBuffer *tbuf1 = inputTile->duplicate();
bool breaked = false;
FastGaussianBlurOperation::IIR_gauss(tbuf1, s1, 0, 3);
if (!breaked) FastGaussianBlurOperation::IIR_gauss(tbuf1, s1, 1, 3);
if (isBreaked()) breaked = true;
if (!breaked) FastGaussianBlurOperation::IIR_gauss(tbuf1, s1, 2, 3);
MemoryBuffer *tbuf2 = tbuf1->duplicate();
if (isBreaked()) breaked = true;
if (!breaked) FastGaussianBlurOperation::IIR_gauss(tbuf2, s2, 0, 3);
if (isBreaked()) breaked = true;
if (!breaked) FastGaussianBlurOperation::IIR_gauss(tbuf2, s2, 1, 3);
if (isBreaked()) breaked = true;
if (!breaked) FastGaussianBlurOperation::IIR_gauss(tbuf2, s2, 2, 3);
ofs = (settings->iter & 1) ? 0.5f : 0.0f;
for (x = 0; x < (settings->iter * 4); x++) {
y = x & 3;
cm[x][0] = cm[x][1] = cm[x][2] = 1;
if (y == 1) fRGB_rgbmult(cm[x], 1.0f, cmo, cmo);
if (y == 2) fRGB_rgbmult(cm[x], cmo, cmo, 1.0f);
if (y == 3) fRGB_rgbmult(cm[x], cmo, 1.0f, cmo);
scalef[x] = 2.1f * (1.0f - (x + ofs) / (float)(settings->iter * 4));
if (x & 1) scalef[x] = -0.99f / scalef[x];
}
sc = 2.13;
isc = -0.97;
for (y = 0; y < gbuf->getHeight() && (!breaked); y++) {
v = ((float)y + 0.5f) / (float)gbuf->getHeight();
for (x = 0; x < gbuf->getWidth(); x++) {
u = ((float)x + 0.5f) / (float)gbuf->getWidth();
s = (u - 0.5f) * sc + 0.5f, t = (v - 0.5f) * sc + 0.5f;
tbuf1->readBilinear(c, s * gbuf->getWidth(), t * gbuf->getHeight());
sm = smoothMask(s, t);
mul_v3_fl(c, sm);
s = (u - 0.5f) * isc + 0.5f, t = (v - 0.5f) * isc + 0.5f;
tbuf2->readBilinear(tc, s * gbuf->getWidth() - 0.5f, t * gbuf->getHeight() - 0.5f);
sm = smoothMask(s, t);
madd_v3_v3fl(c, tc, sm);
gbuf->writePixel(x, y, c);
}
if (isBreaked()) breaked = true;
}
memset(tbuf1->getBuffer(), 0, tbuf1->getWidth() * tbuf1->getHeight() * COM_NUM_CHANNELS_COLOR * sizeof(float));
for (n = 1; n < settings->iter && (!breaked); n++) {
for (y = 0; y < gbuf->getHeight() && (!breaked); y++) {
v = ((float)y + 0.5f) / (float)gbuf->getHeight();
for (x = 0; x < gbuf->getWidth(); x++) {
u = ((float)x + 0.5f) / (float)gbuf->getWidth();
tc[0] = tc[1] = tc[2] = 0.0f;
for (p = 0; p < 4; p++) {
np = (n << 2) + p;
s = (u - 0.5f) * scalef[np] + 0.5f;
t = (v - 0.5f) * scalef[np] + 0.5f;
gbuf->readBilinear(c, s * gbuf->getWidth() - 0.5f, t * gbuf->getHeight() - 0.5f);
mul_v3_v3(c, cm[np]);
sm = smoothMask(s, t) * 0.25f;
madd_v3_v3fl(tc, c, sm);
}
tbuf1->addPixel(x, y, tc);
}
if (isBreaked()) breaked = true;
}
memcpy(gbuf->getBuffer(), tbuf1->getBuffer(), tbuf1->getWidth() * tbuf1->getHeight() * COM_NUM_CHANNELS_COLOR * sizeof(float));
}
memcpy(data, gbuf->getBuffer(), gbuf->getWidth() * gbuf->getHeight() * COM_NUM_CHANNELS_COLOR * sizeof(float));
delete gbuf;
delete tbuf1;
delete tbuf2;
}
示例15: generateGlare
void GlareStreaksOperation::generateGlare(float *data, MemoryBuffer *inputTile, NodeGlare *settings)
{
int x, y, n;
unsigned int nump = 0;
float c1[4], c2[4], c3[4], c4[4];
float a, ang = DEG2RADF(360.0f) / (float)settings->streaks;
int size = inputTile->getWidth() * inputTile->getHeight();
int size4 = size * 4;
bool breaked = false;
MemoryBuffer *tsrc = inputTile->duplicate();
MemoryBuffer *tdst = new MemoryBuffer(COM_DT_COLOR, inputTile->getRect());
tdst->clear();
memset(data, 0, size4 * sizeof(float));
for (a = 0.0f; a < DEG2RADF(360.0f) && (!breaked); a += ang) {
const float an = a + settings->angle_ofs;
const float vx = cos((double)an), vy = sin((double)an);
for (n = 0; n < settings->iter && (!breaked); ++n) {
const float p4 = pow(4.0, (double)n);
const float vxp = vx * p4, vyp = vy * p4;
const float wt = pow((double)settings->fade, (double)p4);
const float cmo = 1.0f - (float)pow((double)settings->colmod, (double)n + 1); // colormodulation amount relative to current pass
float *tdstcol = tdst->getBuffer();
for (y = 0; y < tsrc->getHeight() && (!breaked); ++y) {
for (x = 0; x < tsrc->getWidth(); ++x, tdstcol += 4) {
// first pass no offset, always same for every pass, exact copy,
// otherwise results in uneven brightness, only need once
if (n == 0) tsrc->read(c1, x, y); else c1[0] = c1[1] = c1[2] = 0;
tsrc->readBilinear(c2, x + vxp, y + vyp);
tsrc->readBilinear(c3, x + vxp * 2.0f, y + vyp * 2.0f);
tsrc->readBilinear(c4, x + vxp * 3.0f, y + vyp * 3.0f);
// modulate color to look vaguely similar to a color spectrum
c2[1] *= cmo;
c2[2] *= cmo;
c3[0] *= cmo;
c3[1] *= cmo;
c4[0] *= cmo;
c4[2] *= cmo;
tdstcol[0] = 0.5f * (tdstcol[0] + c1[0] + wt * (c2[0] + wt * (c3[0] + wt * c4[0])));
tdstcol[1] = 0.5f * (tdstcol[1] + c1[1] + wt * (c2[1] + wt * (c3[1] + wt * c4[1])));
tdstcol[2] = 0.5f * (tdstcol[2] + c1[2] + wt * (c2[2] + wt * (c3[2] + wt * c4[2])));
tdstcol[3] = 1.0f;
}
if (isBreaked()) {
breaked = true;
}
}
memcpy(tsrc->getBuffer(), tdst->getBuffer(), sizeof(float) * size4);
}
float *sourcebuffer = tsrc->getBuffer();
float factor = 1.0f / (float)(6 - settings->iter);
for (int i = 0; i < size4; i += 4) {
madd_v3_v3fl(&data[i], &sourcebuffer[i], factor);
data[i + 3] = 1.0f;
}
tdst->clear();
memcpy(tsrc->getBuffer(), inputTile->getBuffer(), sizeof(float) * size4);
nump++;
}
delete tsrc;
delete tdst;
}