本文整理汇总了C++中Matrix3x3::inverse方法的典型用法代码示例。如果您正苦于以下问题:C++ Matrix3x3::inverse方法的具体用法?C++ Matrix3x3::inverse怎么用?C++ Matrix3x3::inverse使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Matrix3x3
的用法示例。
在下文中一共展示了Matrix3x3::inverse方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: SetPMat
void PPC::SetPMat(){
Matrix3x3 cam;
cam.setColumn(0, a);
cam.setColumn(1, b);
cam.setColumn(2, c);
pMat = cam.inverse();
}
示例2: lookAt
void Node::lookAt( const math::Vector3& target, const math::Vector3& up )
{
assert( Math::abs(up.length()-1.f) < 1e-3f ); // Up direction must be normalized
// src parent->world space
Matrix4x4 parentToWorld = Matrix4x4(1);
const Node* parent = this->parent();
while ( parent )
{
parentToWorld = parent->transform() * parentToWorld;
parent = parent->parent();
}
// src->world space
Matrix4x4 sourceToWorld = parentToWorld * transform();
// src -> target (world space)
Vector3 sourceRotZ = target - sourceToWorld.translation();
if ( sourceRotZ.lengthSquared() > Float::MIN_VALUE )
{
// src->target direction (world space)
sourceRotZ = sourceRotZ.normalize();
// src rotation (world space)
Vector3 sourceRotX = up.cross( sourceRotZ );
if ( sourceRotX.lengthSquared() > Float::MIN_VALUE )
sourceRotX = sourceRotX.normalize();
else
sourceRotX = Vector3(1,0,0);
Vector3 sourceRotY = sourceRotZ.cross( sourceRotX );
Matrix3x3 sourceRot;
sourceRot.setColumn( 0, sourceRotX );
sourceRot.setColumn( 1, sourceRotY );
sourceRot.setColumn( 2, sourceRotZ );
// src world space rotation back to src parent space
Matrix3x3 parentToWorldRot = parentToWorld.rotation();
Matrix3x3 rot = sourceRot * parentToWorldRot.inverse();
setRotation( rot );
}
}
示例3: zero
std::vector<Line2D> generateCrossSectionBounds(int edge,int frame,const Compound* compound,const Matrix3x3& polyBasisToStdBasis,bool symmetrize)
{
Line refEdge=compound->getPolyhedron(frame)->getEdgeLine(edge);
Point midpoint=refEdge.getMidpoint();
Matrix3x3 stdBasisToPolyBasis=polyBasisToStdBasis.inverse();
Plane z0=planeThroughPointPerpendicularToLine(midpoint, refEdge);
Point zero(0,0,0);
Line zeroLine(zero,zero);
//make vectors containing cross section lines
std::vector<Line2D> crossSection2D; //cross section lines expressed in poly basis (in 2D, z-component is ignored since the cross section is the same along the axis of the edge)
double compoundCylinder=compound->computeWidth();
for (int i=0;i<compound->getNumberOfPolyhedra();i++)
{
if (i==frame) {continue;}
const Polyhedron* poly=compound->getPolyhedron(i);
for (int j=0;j<poly->getEdgeNum();j++)
{
Line edge=poly->getEdgeLine(j);
Line closeApproach=lineOfClosestApproach(edge, refEdge);
if (closeApproach==zeroLine) {continue;} //REDO THIS: closest approach occurs outside the line segments + oa buffers
Point mid=closeApproach.getMidpoint();
Plane thePlane=planeThroughPointPerpendicularToLine(mid, closeApproach); //plane separating the two line segments
Line intersection=planePlaneIntersection(z0, thePlane); //intersection of this plane with the xy-plane of the poly basis
if (intersection==zeroLine) {continue;} //the two planes are parallel
Point v1=intersection.getPointA()-midpoint;
Point v2=intersection.getPointB()-midpoint;
Point basis1=vectorInBasis(stdBasisToPolyBasis, v1);
Point basis2=vectorInBasis(stdBasisToPolyBasis, v2);
Line basisLine=Line(basis1,basis2); //find the intersection line in poly basis
Line2D basisLine2d=lineToLine2D(basisLine); //intersection line in poly basis without z-component (z should be 0 anyway)
if (closeApproach.getDistance()<compoundCylinder)
{
std::cout << "Error: cross section line is closer than cylinder radius. oa most likely too large\n";
double closeDist=segmentSegmentDist(edge, refEdge);
std::string different=(fabs(closeDist-closeApproach.getDistance())>EPS)?"???":"";
std::cout << i << " " << j << " ";
std::cout << lineOfClosestApproach(edge, refEdge,true).getDistance() << " ";
std::cout << closeDist << " ";
std::cout << different << " ";
std::cout << basisLine2d.toString() << "\n\n";
}
crossSection2D.push_back(lineToLine2D(basisLine));
if (symmetrize)
{
double newm=-1*basisLine2d.getSlope();
double newb=basisLine2d.getYIntercept();
Line2D reflect(newm,newb);
crossSection2D.push_back(reflect);
}
}
}
return crossSection2D;
}
示例4: Render
void TMesh::Render(PPC * ppc, FrameBuffer *fb, PointLight *pl, bool wireframe, Envmap *env){
if(trisN == 0 && vertsN != 0){
RenderPoints(ppc,fb,3);
return;
}else if(trisN == 0 && vertsN == 0){
return;
}
Vector3D *projVerts = new Vector3D[vertsN];
for(int i = 0; i < vertsN; i++){
projVerts[i] = Vector3D(FLT_MAX, FLT_MAX, FLT_MAX);
ppc->Project(verts[i], projVerts[i]);
}
for(int i = 0; i < trisN; i++){
int currTri = i;
unsigned int vinds[3];
vinds[0] = tris[3*i+0];
vinds[1] = tris[3*i+1];
vinds[2] = tris[3*i+2];
if(wireframe){
for(int j = 0; j < 3; j++){
fb->DrawSegment(projVerts[vinds[j]], projVerts[vinds[(j+1)%3]], cols[vinds[j]], cols[vinds[(j+1)%3]]);
}
continue;
}
//Setup Rasterization
//Create AABB
AABB aabb = AABB(projVerts[vinds[0]]);
aabb.AddPoint(projVerts[vinds[1]]);
aabb.AddPoint(projVerts[vinds[2]]);
if(!aabb.Clip(fb->w, fb->h)){
continue;
}
int top = (int) (0.5f + aabb.corners[0][1]);
int left = (int) (0.5f + aabb.corners[0][0]);
int bottom = (int) (-0.5f + aabb.corners[1][1]);
int right = (int) (-0.5f + aabb.corners[1][0]);
//Edge equations
Vector3D eeqs[3];
for(int i = 0; i < 3; i++){
int _i = (i+1)%3;
eeqs[i][0] = projVerts[vinds[_i]][1] - projVerts[vinds[i]][1];
eeqs[i][1] = projVerts[vinds[i]][0] - projVerts[vinds[_i]][0];
eeqs[i][2] = projVerts[vinds[i]][1] * (-eeqs[i][1]) - projVerts[vinds[i]][0] * eeqs[i][0];
int _i2 = (i+2)%3;
Vector3D v3 = Vector3D(projVerts[vinds[_i2]][0], projVerts[vinds[_i2]][1], 1.0f);
if(v3*eeqs[i] < 0){
eeqs[i] = -1.0f * eeqs[i];
}
}
//Screen Space Interpolation
Matrix3x3 ssii = Matrix3x3();
ssii[0] = projVerts[vinds[0]]; ssii[0][2] = 1.0f;
ssii[1] = projVerts[vinds[1]]; ssii[1][2] = 1.0f;
ssii[2] = projVerts[vinds[2]]; ssii[2][2] = 1.0f;
ssii = ssii.inverse();
//Color interpolation
Matrix3x3 tcols = Matrix3x3();
tcols[0] = cols[vinds[0]];
tcols[1] = cols[vinds[1]];
tcols[2] = cols[vinds[2]];
if(gouraud){ //Apply lighting before creating interpolation matrix
Vector3D toPL;
Vector3D norm;
Vector3D eyeV;
Vector3D reflectedToPL;
for(int i = 0; i < 3; i++){
toPL = (pl->pos - verts[vinds[i]]).normalize();
norm = (normals[vinds[i]]).normalize();
eyeV = (ppc->C - verts[vinds[i]]).normalize();
reflectedToPL = (2.0f * norm * (norm * toPL) - toPL).normalize();
kdiff = toPL * norm;
if(kdiff < 0.0f){
kdiff = 0.0f;
}
float temp = reflectedToPL * eyeV;
//.........这里部分代码省略.........