本文整理汇总了C++中Mat::Rows方法的典型用法代码示例。如果您正苦于以下问题:C++ Mat::Rows方法的具体用法?C++ Mat::Rows怎么用?C++ Mat::Rows使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Mat
的用法示例。
在下文中一共展示了Mat::Rows方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: lagrange2D
// This routine evaluates the Lagrange interpolating polynomial,
// defined over a set of data points (x_i,y_i), i=0,...,n, at a point z.
//
// Usage: p = lagrange(x, y, z);
//
// inputs: x Mat vector of length n+1, containing the interpolation nodes
// y Mat vector of length n+1, containing the interpolation data
// z double location to evaluate polynomial
// outputs: p value of p(z)
//
double lagrange2D(Mat &x, Mat &y, Mat&z, double a,double b)
{
// check input arguments (lengths of x and y)
if (x.Rows()*x.Cols() != y.Rows()*y.Cols()) {
cerr << "lagrange2d error: x and y have different lengths!\n";
return 0.0;
}
// get m
int m = x.Rows()*x.Cols() - 1;
// get n
int n = y.Rows()*y.Cols() - 1;
// evaluate p
double p = 0.0; // initialize result
for(int i=0;i<=m;i++){
for (int j=0; j<=n; j++) // loop over data values
p += z(i,j)*lagrange_basis2D(x, i, a)*lagrange_basis2D(y, j, b); // update result with next term
}
// return final result
return p;
} // end of function
示例2: result
Mat operator - (const Mat &m)
{
Mat result(m.Rows(), m.Cols());
Int i;
for (i = 0; i < m.Rows(); i++)
result[i] = -m[i];
return(result);
}
示例3: BackSub
// performs backwards substitution on the linear system U*x = b, filling in the input Mat x
int BackSub(Mat &U, Mat &x, Mat &b) {
// check that matrix sizes match
if (U.Rows() != b.Rows() || U.Rows() != U.Cols() ||
b.Cols() != 1 || x.Rows() != U.Rows() || x.Cols() != 1) {
fprintf(stderr,"BackSub error, illegal matrix/vector dimensions\n");
fprintf(stderr," Mat is %li x %li, sol is %li x %li, rhs is %li x %li\n",
U.Rows(), U.Cols(), x.Rows(), x.Cols(), b.Rows(), b.Cols());
return 1;
}
// copy b into x
x = b;
// perform column-oriented Backwards Substitution algorithm
for (long int j=U.Rows()-1; j>=0; j--) {
// solve for this row of solution
x(j) = x(j)/U(j,j);
// update all subsequent rhs
for (long int i=0; i<j; i++)
x(i) -= U(i,j)*x(j);
}
// return success
return 0;
}
示例4: trans
Mat trans(const Mat &m)
{
Int i,j;
Mat result(m.Cols(), m.Rows());
for (i = 0; i < m.Rows(); i++)
for (j = 0; j < m.Cols(); j++)
result.Elt(j,i) = m.Elt(i,j);
return(result);
}
示例5: Assert
Vec operator * (const Vec &v, const Mat &m) // v * m
{
Assert(v.Elts() == m.Rows(), "(Mat::v*m) vector/matrix sizes don't match");
Vec result(m.Cols(), vl_zero);
Int i;
for (i = 0; i < m.Rows(); i++)
result += m[i] * v[i];
return(result);
}
示例6: BGRAtoRGB
void ColorSpace::BGRAtoRGB(const Mat& color1, Mat& color2)
{
color2.Create (color1.Rows(), color1.Cols(), MAT_TBYTE3);
int d=0;
uchar* psrc=color1.data.ptr[0];
uchar* pdst=color2.data.ptr[0];
int datalen=color1.Rows()*color1.Cols()*3;
for (int i=0; i<datalen; i+=3, d+=4)
{
pdst[i]=psrc[d+2];
pdst[i+1]=psrc[d+1];
pdst[i+2]=psrc[d];
}
}
示例7:
// copy constructor
Mat::Mat(const Mat& A) {
nrows = A.Rows();
ncols = A.Cols();
data = new double[ncols*nrows];
own_data = true;
for (long int i=0; i<nrows*ncols; i++) data[i] = A.data[i];
}
示例8: Dot
// dot-product of x and y
double Dot(Mat &x, Mat &y) {
// check that array sizes match
if (y.Rows() != x.Rows() || y.Cols() != x.Cols()) {
fprintf(stderr,"Dot error, matrix size mismatch\n");
fprintf(stderr," Mat 1 is %li x %li, Mat 2 is %li x %li\n",
x.Rows(), x.Cols(), y.Rows(), y.Cols());
return 0.0;
}
// perform operation and return
double sum=0.0;
for (long int j=0; j<x.Cols(); j++)
for (long int i=0; i<x.Rows(); i++)
sum += x(i,j)*y(i,j);
return sum;
}
示例9: GraytoRGB
void ColorSpace::GraytoRGB (const Mat& gray, Mat& color)
{
if (gray.Channels()==3)
{
color.Create (gray, TRUE);
return;
}
if (gray.SizeObject() != color.SizeObject() || color.Channels()==3)
{
color.Release();
color.Create (gray.SizeObject(), (TYPE)CVLIB_MAKETYPE(gray.Type(), 3));
}
int nH = color.Rows(), nW = color.Cols();
int elemsize=CVLIB_ELEM_SIZE(gray.Type());
for (int i = 0; i < nH; i ++)
{
uchar* pcolor=color.data.ptr[i];
uchar* pgray=gray.data.ptr[i];
for (int k=0; k<nW; k++)
{
memcpy (&pcolor[3*k*elemsize], &pgray[k*elemsize], elemsize);
memcpy (&pcolor[(3*k+1)*elemsize], &pgray[k*elemsize], elemsize);
memcpy (&pcolor[(3*k+2)*elemsize], &pgray[k*elemsize], elemsize);
}
}
}
示例10: lagrange_basis
// Utility function to evaluate a given Lagrange basis function at a point.
//
// Usage: l = lagrange_basis(x, i, z);
//
// inputs: x Mat vector of length n+1, containing the interpolation nodes
// i integer indicating which Lagrange basis function to evaluate
// z double location to evaluate basis function
// outputs: p value of l(z)
//
double lagrange_basis(Mat &x, int i, double z) {
double l = 1.0; // initialize basis function
double *xd = x.get_data(); // access data array (for increased speed)
for (int j=0; j<x.Rows()*x.Cols(); j++)
if (j != i) l *= (z - xd[j]) / (xd[i] - xd[j]);
return l;
}
示例11: Dot
// compute the dot-product of two compatible vectors x and y
double Dot(Mat &x, Mat &y) {
// check that array sizes match
if (y.Rows() != x.Rows() || y.Cols() != x.Cols()) {
cerr << "Dot error, matrix size mismatch\n";
cerr << " Mat 1 is " << x.Rows() << " x " << x.Cols()
<< ", Mat 2 is " << y.Rows() << " x " << y.Cols() << endl;
return 0.0;
}
// perform operation and return
double sum=0.0;
for (long int j=0; j<x.Cols(); j++)
for (long int i=0; i<x.Rows(); i++)
sum += x(i,j)*y(i,j);
return sum;
}
示例12: trace
Real trace(const Mat &m)
{
Int i;
Real result = vl_0;
for (i = 0; i < m.Rows(); i++)
result += m.Elt(i,i);
return(result);
}
示例13: BackSub
// performs backwards substitution on the linear system U*x = b, filling in the input Mat x
int BackSub(Mat &Umat, Mat &xvec, Mat &bvec) {
// check that matrix sizes match
if (Umat.Rows() != bvec.Rows() || Umat.Rows() != Umat.Cols() || bvec.Cols() != 1 ||
xvec.Rows() != Umat.Rows() || xvec.Cols() != 1) {
cerr << "BackSub error, illegal matrix/vector dimensions\n";
cerr << " Mat is " << Umat.Rows() << " x " << Umat.Cols()
<< ", rhs is " << bvec.Rows() << " x " << bvec.Cols()
<< ", solution is " << xvec.Rows() << " x " << xvec.Cols() << endl;
return 1;
}
// get the matrix size
long int n = Umat.Rows();
// access the data arrays
double *U = Umat.get_data();
double *x = xvec.get_data();
double *b = bvec.get_data();
// copy b into x
xvec = bvec;
// analyze matrix for typical nonzero magnitude
double Umax = Umat.MaxNorm();
// perform column-oriented Backwards Substitution algorithm
for (long int j=n-1; j>=0; j--) {
// check for nonzero matrix diagonal
if (fabs(U[IDX(j,j,n)]) < STOL*Umax) {
cerr << "BackSub error: numerically singular matrix!\n";
return 1;
}
// solve for this row of solution
x[j] /= U[IDX(j,j,n)];
// update all remaining rhs
for (long int i=0; i<j; i++)
x[i] -= U[IDX(i,j,n)]*x[j];
}
// return success
return 0;
}
示例14: FwdSub
// performs forwards substitution on the linear system L*x = b, filling in the input Mat x
int FwdSub(Mat &Lmat, Mat &xvec, Mat &bvec) {
// check that matrix sizes match
if (Lmat.Rows() != bvec.Rows() || Lmat.Rows() != Lmat.Cols() || bvec.Cols() != 1 ||
xvec.Rows() != Lmat.Rows() || xvec.Cols() != 1) {
cerr << "FwdSub error, illegal matrix/vector dimensions\n";
cerr << " Mat is " << Lmat.Rows() << " x " << Lmat.Cols()
<< ", rhs is " << bvec.Rows() << " x " << bvec.Cols()
<< ", solution is " << xvec.Rows() << " x " << xvec.Cols() << endl;
return 1;
}
// get the matrix size
long int n = Lmat.Rows();
// access the data arrays
double *L = Lmat.get_data();
double *x = xvec.get_data();
double *b = bvec.get_data();
// copy b into x
xvec = bvec;
// analyze matrix for typical nonzero magnitude
double Lmax = Lmat.MaxNorm();
// perform column-oriented Forwards Substitution algorithm
for (long int j=0; j<n; j++) {
// check for nonzero matrix diagonal
if (fabs(L[IDX(j,j,n)]) < STOL*Lmax) {
cerr << "FwdSub error: singular matrix!\n";
return 1;
}
// solve for this row of solution
x[j] /= L[IDX(j,j,n)];
// update all remaining rhs
for (long int i=j+1; i<n; i++)
x[i] -= L[IDX(i,j,n)]*x[j];
}
// return success
return 0;
}
示例15: lagrange
// This routine evaluates the Lagrange interpolating polynomial,
// defined over a set of data points (x_i,y_i), i=0,...,n, at a point z.
//
// Usage: p = lagrange(x, y, z);
//
// inputs: x Mat vector of length n+1, containing the interpolation nodes
// y Mat vector of length n+1, containing the interpolation data
// z double location to evaluate polynomial
// outputs: p value of p(z)
//
double lagrange(Mat &x, Mat &y, double z)
{
// check input arguments (lengths of x and y)
if (x.Rows()*x.Cols() != y.Rows()*y.Cols()) {
cerr << "lagrange error: x and y have different lengths!\n";
return 0.0;
}
// get n
int n = x.Rows()*x.Cols() - 1;
// evaluate p
double p = 0.0; // initialize result
for (int i=0; i<=n; i++) // loop over data values
p += y(i)*lagrange_basis(x, i, z); // update result with next term
// return final result
return p;
} // end of function