当前位置: 首页>>代码示例>>C++>>正文


C++ Mat::MaxNorm方法代码示例

本文整理汇总了C++中Mat::MaxNorm方法的典型用法代码示例。如果您正苦于以下问题:C++ Mat::MaxNorm方法的具体用法?C++ Mat::MaxNorm怎么用?C++ Mat::MaxNorm使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Mat的用法示例。


在下文中一共展示了Mat::MaxNorm方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: BackSub

// performs backwards substitution on the linear system U*x = b, filling in the input Mat x
int BackSub(Mat &Umat, Mat &xvec, Mat &bvec) {

  // check that matrix sizes match
  if (Umat.Rows() != bvec.Rows() || Umat.Rows() != Umat.Cols() || bvec.Cols() != 1 || 
      xvec.Rows() != Umat.Rows() || xvec.Cols() != 1) {
    cerr << "BackSub error, illegal matrix/vector dimensions\n";
    cerr << "  Mat is " << Umat.Rows() << " x " << Umat.Cols() 
	 << ",  rhs is " << bvec.Rows() << " x " << bvec.Cols()
	 << ",  solution is " << xvec.Rows() << " x " << xvec.Cols() << endl;
    return 1;
  }
  
  // get the matrix size 
  long int n = Umat.Rows();
  
  // access the data arrays
  double *U = Umat.get_data();
  double *x = xvec.get_data();
  double *b = bvec.get_data();

  // copy b into x
  xvec = bvec;

  // analyze matrix for typical nonzero magnitude
  double Umax = Umat.MaxNorm();

  // perform column-oriented Backwards Substitution algorithm
  for (long int j=n-1; j>=0; j--) {

    // check for nonzero matrix diagonal
    if (fabs(U[IDX(j,j,n)]) < STOL*Umax) {
      cerr << "BackSub error: numerically singular matrix!\n";
      return 1;
    }

    // solve for this row of solution
    x[j] /= U[IDX(j,j,n)];

    // update all remaining rhs
    for (long int i=0; i<j; i++)
      x[i] -= U[IDX(i,j,n)]*x[j];

  }

  // return success
  return 0;
}
开发者ID:conradhappeliv,项目名称:schoolwork,代码行数:48,代码来源:mat.cpp

示例2: FwdSub

// performs forwards substitution on the linear system L*x = b, filling in the input Mat x
int FwdSub(Mat &Lmat, Mat &xvec, Mat &bvec) {

  // check that matrix sizes match
  if (Lmat.Rows() != bvec.Rows() || Lmat.Rows() != Lmat.Cols() || bvec.Cols() != 1 || 
      xvec.Rows() != Lmat.Rows() || xvec.Cols() != 1) {
    cerr << "FwdSub error, illegal matrix/vector dimensions\n";
    cerr << "  Mat is " << Lmat.Rows() << " x " << Lmat.Cols() 
	 << ",  rhs is " << bvec.Rows() << " x " << bvec.Cols()
	 << ",  solution is " << xvec.Rows() << " x " << xvec.Cols() << endl;
    return 1;
  }
  
  // get the matrix size 
  long int n = Lmat.Rows();
  
  // access the data arrays
  double *L = Lmat.get_data();
  double *x = xvec.get_data();
  double *b = bvec.get_data();

  // copy b into x
  xvec = bvec;

  // analyze matrix for typical nonzero magnitude
  double Lmax = Lmat.MaxNorm();

  // perform column-oriented Forwards Substitution algorithm
  for (long int j=0; j<n; j++) {

    // check for nonzero matrix diagonal
    if (fabs(L[IDX(j,j,n)]) < STOL*Lmax) {
      cerr << "FwdSub error: singular matrix!\n";
      return 1;
    }

    // solve for this row of solution
    x[j] /= L[IDX(j,j,n)];

    // update all remaining rhs
    for (long int i=j+1; i<n; i++)
      x[i] -= L[IDX(i,j,n)]*x[j];

  }

  // return success
  return 0;
}
开发者ID:conradhappeliv,项目名称:schoolwork,代码行数:48,代码来源:mat.cpp

示例3: Solve

// solves a linear system A*x = b, filling in the input Mat x
int Solve(Mat &Amat, Mat &xvec, Mat &bvec) {

  // check that matrix sizes match
  if (Amat.Rows() != bvec.Rows() || Amat.Rows() != Amat.Cols() || bvec.Cols() != 1 || 
      xvec.Rows() != Amat.Rows() || xvec.Cols() != 1) {
    cerr << "Solve error, illegal matrix/vector dimensions\n";
    cerr << "  Mat is " << Amat.Rows() << " x " << Amat.Cols() 
	 << ",  rhs is " << bvec.Rows() << " x " << bvec.Cols()
	 << ",  solution is " << xvec.Rows() << " x " << xvec.Cols() << endl;
    return 1;
  }
  
  // create temporary variables
  long int i, j, k, p, n;
  double m, tmp, Amax;

  // access the data arrays
  double *A = Amat.get_data();
  double *b = bvec.get_data();

  // determine maximum absolute entry in A (for singularity check later)
  Amax = Amat.MaxNorm();

  // perform Gaussian elimination to convert A,b to an upper-triangular system
  n = Amat.Rows();
  for (k=0; k<n-1; k++) {   // loop over diagonals

    // find the pivot row p
    p=k;
    for (i=k; i<n; i++)  
      if (fabs(A[IDX(i,k,n)]) > fabs(A[IDX(p,k,n)]))  
	p=i;

    // swap rows in A
    for (j=k; j<n; j++) {
      tmp = A[IDX(p,j,n)];
      A[IDX(p,j,n)] = A[IDX(k,j,n)];
      A[IDX(k,j,n)] = tmp;
    }

    // swap rows in b
    tmp = b[p];
    b[p] = b[k];
    b[k] = tmp;

    // check for nonzero matrix diagonal
    if (fabs(A[IDX(k,k,n)]) < STOL*Amax) {
      cerr << "Solve error: numerically singular matrix!\n";
      return 1;
    }

    // perform elimination using row k
    for (i=k+1; i<n; i++)      // store multipliers in column below pivot
      A[IDX(i,k,n)] /= A[IDX(k,k,n)];
    for (j=k+1; j<n; j++)      // loop over columns of A, to right of pivot 
      for (i=k+1; i<n; i++)    // update rows in column
	A[IDX(i,j,n)] -= A[IDX(i,k,n)]*A[IDX(k,j,n)];
    for (i=k+1; i<n; i++)      // update entries in b
      b[i] -= A[IDX(i,k,n)]*b[k];
  }

  // check for singularity at end (only need to check final diagonal entry)
  if (fabs(A[IDX(n-1,n-1,n)]) < STOL*Amax) {
    cerr << "Solve error: numerically singular matrix!\n";
    return 1;
  }

  // check for singularity at end (only need to check final diagonal entry)
  if (fabs(A[IDX(n-1,n-1,n)]) < STOL*Amax) {
    cerr << "Solve error: numerically singular matrix!\n";
    return 1;
  }

  // perform Backwards Substitution on result
  if (BackSub(Amat, xvec, bvec) != 0) {
    cerr << "Solve: error in BackSub call\n";
    return 1;
  }

  // return success
  return 0;
}
开发者ID:conradhappeliv,项目名称:schoolwork,代码行数:83,代码来源:mat.cpp

示例4: Solve

// solves a linear system A*x = b, filling in the input Mat x
int Solve(Mat &A, Mat &x, Mat &b) {

  // create temporary variables
  long int i, j, k, p, n;
  double tmp, Amax;

  // check that matrix sizes match
  if (A.Rows() != b.Rows() || A.Rows() != A.Cols() ||
      b.Cols() != 1 || x.Rows() != A.Rows() || x.Cols() != 1) {
    fprintf(stderr,"Solve error, illegal matrix/vector dimensions\n");
    fprintf(stderr,"  Mat is %li x %li,  sol is %li x %li,  rhs is %li x %li\n",
	    A.Rows(), A.Cols(), x.Rows(), x.Cols(), b.Rows(), b.Cols());
    return 1;
  }

  // determine maximum absolute entry in A (for singularity check later)
  Amax = A.MaxNorm();

  // perform Gaussian elimination to convert A,b to an upper-triangular system
  n = A.Rows();
  for (k=0; k<n-1; k++) {   // loop over diagonals

    // find the pivot row p
    p=k;
    for (i=k; i<n; i++)
      if (fabs(A(i,k)) > fabs(A(p,k)))
	p=i;

    // swap rows in A
    for (j=k; j<n; j++) {
      tmp = A(p,j);
      A(p,j) = A(k,j);
      A(k,j) = tmp;
    }

    // swap rows in b
    tmp = b(p);
    b(p) = b(k);
    b(k) = tmp;

    // check for singular matrix
    if (fabs(A(k,k)) < 1.e-13*Amax) {
      fprintf(stderr,"Solve error: numerically singular matrix!\n");
      return 1;
    }

    // perform elimination on remaining submatrix of A using row k
    for (j=k+1; j<n; j++)
      for (i=k+1; i<n; i++)
	A(i,j) = A(i,j) - A(i,k)/A(k,k)*A(k,j);

    // perform elimination on remainder of b using row k
    for (i=k+1; i<n; i++)  b(i) -= A(i,k)/A(k,k)*b(k);

  }

  // check for singularity at end (only need to check final diagonal entry)
  if (fabs(A(n-1,n-1)) < 1.e-13*Amax) {
    fprintf(stderr,"Solve error: numerically singular matrix!\n");
    return 1;
  }

  // perform Backwards Substitution on result
  if (BackSub(A, x, b) != 0) {
    fprintf(stderr,"Solve error in BackSub call\n");
    return 1;
  }

  // return success
  return 0;
}
开发者ID:TylerJackson,项目名称:SciCompRepo,代码行数:72,代码来源:Mat.cpp


注:本文中的Mat::MaxNorm方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。