当前位置: 首页>>代码示例>>C++>>正文


C++ LayerPtr::getOutputValue方法代码示例

本文整理汇总了C++中LayerPtr::getOutputValue方法的典型用法代码示例。如果您正苦于以下问题:C++ LayerPtr::getOutputValue方法的具体用法?C++ LayerPtr::getOutputValue怎么用?C++ LayerPtr::getOutputValue使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在LayerPtr的用法示例。


在下文中一共展示了LayerPtr::getOutputValue方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: doOneConvtTest

// Do one forward pass of convTrans layer and check to see if its output
// matches the given result
void doOneConvtTest(size_t imgSize,
                    size_t output_x,
                    size_t stride,
                    size_t padding,
                    size_t filter_size,
                    MatrixPtr& result) {
  TestConfig configt;
  configt.biasSize = 1;
  configt.layerConfig.set_type("exconvt");
  configt.layerConfig.set_num_filters(1);
  configt.layerConfig.set_partial_sum(1);
  configt.layerConfig.set_shared_biases(true);

  configt.inputDefs.push_back(
      {INPUT_DATA, "layer_0", output_x * output_x, filter_size * filter_size});
  LayerInputConfig* input = configt.layerConfig.add_inputs();
  ConvConfig* conv = input->mutable_conv_conf();
  conv->set_filter_size(filter_size);
  conv->set_filter_size_y(filter_size);
  conv->set_channels(1);
  conv->set_padding(padding);
  conv->set_padding_y(padding);
  conv->set_stride(stride);
  conv->set_stride_y(stride);
  conv->set_groups(1);
  conv->set_filter_channels(1);
  conv->set_img_size(imgSize);
  conv->set_output_x(output_x);

  configt.layerConfig.set_size(conv->img_size() * conv->img_size() *
                               configt.layerConfig.num_filters());
  configt.layerConfig.set_name("convTrans");

  std::vector<DataLayerPtr> dataLayers;
  LayerMap layerMap;
  vector<Argument> datas;
  initDataLayer(
      configt, &dataLayers, &datas, &layerMap, "convTrans", 1, false, false);
  dataLayers[0]->getOutputValue()->zeroMem();
  dataLayers[0]->getOutputValue()->add(1.0);

  // test layer initialize
  std::vector<ParameterPtr> parameters;
  LayerPtr convtLayer;
  initTestLayer(configt, &layerMap, &parameters, &convtLayer);
  convtLayer->getBiasParameter()->zeroMem();
  convtLayer->getParameters()[0]->zeroMem();
  convtLayer->getParameters()[0]->getBuf(PARAMETER_VALUE)->add(1.0);
  convtLayer->forward(PASS_GC);

  checkMatrixEqual(convtLayer->getOutputValue(), result);
}
开发者ID:Biocodings,项目名称:Paddle,代码行数:54,代码来源:test_ConvTrans.cpp

示例2: doOnePriorBoxTest

// Do one forward pass of priorBox layer and check to see if its output
// matches the given result
void doOnePriorBoxTest(size_t feature_map_width,
                       size_t feature_map_height,
                       size_t image_width,
                       size_t image_height,
                       vector<int> min_size,
                       vector<int> max_size,
                       vector<real> aspect_ratio,
                       vector<real> variance,
                       bool use_gpu,
                       MatrixPtr& result) {
  // Setting up the priorbox layer
  TestConfig configt;
  configt.layerConfig.set_type("priorbox");

  configt.inputDefs.push_back({INPUT_DATA, "featureMap", 1, 0});
  LayerInputConfig* input = configt.layerConfig.add_inputs();
  configt.inputDefs.push_back({INPUT_DATA, "image", 1, 0});
  configt.layerConfig.add_inputs();
  PriorBoxConfig* pb = input->mutable_priorbox_conf();
  for (size_t i = 0; i < min_size.size(); i++) pb->add_min_size(min_size[i]);
  for (size_t i = 0; i < max_size.size(); i++) pb->add_max_size(max_size[i]);
  for (size_t i = 0; i < variance.size(); i++) pb->add_variance(variance[i]);
  for (size_t i = 0; i < aspect_ratio.size(); i++)
    pb->add_aspect_ratio(aspect_ratio[i]);

  // data layer initialize
  std::vector<DataLayerPtr> dataLayers;
  LayerMap layerMap;
  vector<Argument> datas;
  initDataLayer(
      configt, &dataLayers, &datas, &layerMap, "priorbox", 1, false, use_gpu);
  dataLayers[0]->getOutput().setFrameHeight(feature_map_height);
  dataLayers[0]->getOutput().setFrameWidth(feature_map_width);
  dataLayers[1]->getOutput().setFrameHeight(image_height);
  dataLayers[1]->getOutput().setFrameWidth(image_width);

  // test layer initialize
  std::vector<ParameterPtr> parameters;
  LayerPtr priorboxLayer;
  initTestLayer(configt, &layerMap, &parameters, &priorboxLayer);
  priorboxLayer->forward(PASS_GC);
  checkMatrixEqual(priorboxLayer->getOutputValue(), result);
}
开发者ID:Biocodings,项目名称:Paddle,代码行数:45,代码来源:test_PriorBox.cpp

示例3: initDataLayer

// Test that the convTrans forward is the same as conv backward
TEST(Layer, convTransLayerFwd) {
    // Setting up conv-trans layer
    TestConfig configt;
    configt.biasSize = 3;
    configt.layerConfig.set_type("exconvt");
    configt.layerConfig.set_num_filters(3);
    configt.layerConfig.set_partial_sum(1);
    configt.layerConfig.set_shared_biases(true);

    configt.inputDefs.push_back({INPUT_DATA, "layer_0", 1024, 384});
    LayerInputConfig* input = configt.layerConfig.add_inputs();
    ConvConfig* conv = input->mutable_conv_conf();
    conv->set_filter_size(2);
    conv->set_filter_size_y(4);
    conv->set_channels(16);
    conv->set_padding(0);
    conv->set_padding_y(1);
    conv->set_stride(2);
    conv->set_stride_y(2);
    conv->set_groups(1);
    conv->set_filter_channels(3 / conv->groups());
    conv->set_img_size(16);
    conv->set_output_x(outputSize(conv->img_size(), conv->filter_size(),
                                  conv->padding(), conv->stride(),
                                  /* caffeMode */ true));
    configt.layerConfig.set_size(conv->img_size() * conv->img_size() *
                                configt.layerConfig.num_filters());
    configt.layerConfig.set_name("convTrans");

    // data layer initialize
    std::vector<DataLayerPtr> dataLayers;
    LayerMap layerMap;
    vector<Argument> datas;
    initDataLayer(configt, &dataLayers, &datas, &layerMap, "convTrans",
                  100, false, false);
    // test layer initialize
    std::vector<ParameterPtr> parameters;
    LayerPtr convtLayer;
    initTestLayer(configt, &layerMap, &parameters, &convtLayer);
    convtLayer->getBiasParameter()->zeroMem();
    convtLayer->forward(PASS_GC);

    // Setting up conv-layer config
    TestConfig config;
    config.biasSize = 16;
    config.layerConfig.set_type("exconv");
    config.layerConfig.set_num_filters(16);
    config.layerConfig.set_partial_sum(1);
    config.layerConfig.set_shared_biases(true);

    config.inputDefs.push_back({INPUT_DATA, "layer_1", 768, 384});
    input = config.layerConfig.add_inputs();
    conv = input->mutable_conv_conf();
    conv->set_filter_size(2);
    conv->set_filter_size_y(4);
    conv->set_channels(3);
    conv->set_padding(0);
    conv->set_padding_y(1);
    conv->set_stride(2);
    conv->set_stride_y(2);
    conv->set_groups(1);
    conv->set_filter_channels(conv->channels() / conv->groups());
    conv->set_img_size(16);
    conv->set_output_x(outputSize(conv->img_size(), conv->filter_size(),
                                  conv->padding(), conv->stride(),
                                  /* caffeMode */ true));
    config.layerConfig.set_size(conv->output_x() * conv->output_x() *
                                config.layerConfig.num_filters());
    config.layerConfig.set_name("conv");

    // data layer initialize
    std::vector<DataLayerPtr> dataLayers2;
    LayerMap layerMap2;
    vector<Argument> datas2;
    initDataLayer(config, &dataLayers2, &datas2, &layerMap2, "conv",
                  100, false, false);
    // test layer initialize
    std::vector<ParameterPtr> parameters2;
    LayerPtr convLayer;
    initTestLayer(config, &layerMap2, &parameters2, &convLayer);

    // Sync convLayer and convtLayer parameter
    convLayer->getBiasParameter()->zeroMem();
    convLayer->getParameters()[0]->getBuf(PARAMETER_VALUE)->copyFrom(
            *(convtLayer->getParameters()[0]->getBuf(PARAMETER_VALUE)));

    // Set convLayer outputGrad as convTransLayer input value
    convLayer->forward(PASS_GC);
    convLayer->getOutput().grad->copyFrom(*(dataLayers[0]->getOutputValue()));

    vector<int> callbackFlags(parameters2.size(), 0);
    auto callback = [&](Parameter* para) { ++callbackFlags[para->getID()]; };
    convLayer->backward(callback);

    // Check that the convLayer backward is the same as convTransLayer forward
    checkMatrixEqual(convtLayer->getOutputValue(),
                     dataLayers2[0]->getOutputGrad());
}
开发者ID:hiredd,项目名称:Paddle,代码行数:99,代码来源:test_ConvTrans.cpp


注:本文中的LayerPtr::getOutputValue方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。