当前位置: 首页>>代码示例>>C++>>正文


C++ GpuMat::type方法代码示例

本文整理汇总了C++中GpuMat::type方法的典型用法代码示例。如果您正苦于以下问题:C++ GpuMat::type方法的具体用法?C++ GpuMat::type怎么用?C++ GpuMat::type使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在GpuMat的用法示例。


在下文中一共展示了GpuMat::type方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: h

void cv::gpu::copyMakeBorder(InputArray _src, OutputArray _dst, int top, int bottom, int left, int right, int borderType, Scalar value, Stream& _stream)
{
    GpuMat src = _src.getGpuMat();

    CV_Assert( src.depth() <= CV_32F && src.channels() <= 4 );
    CV_Assert( borderType == BORDER_REFLECT_101 || borderType == BORDER_REPLICATE || borderType == BORDER_CONSTANT || borderType == BORDER_REFLECT || borderType == BORDER_WRAP );

    _dst.create(src.rows + top + bottom, src.cols + left + right, src.type());
    GpuMat dst = _dst.getGpuMat();

    cudaStream_t stream = StreamAccessor::getStream(_stream);

    if (borderType == BORDER_CONSTANT && (src.type() == CV_8UC1 || src.type() == CV_8UC4 || src.type() == CV_32SC1 || src.type() == CV_32FC1))
    {
        NppiSize srcsz;
        srcsz.width  = src.cols;
        srcsz.height = src.rows;

        NppiSize dstsz;
        dstsz.width  = dst.cols;
        dstsz.height = dst.rows;

        NppStreamHandler h(stream);

        switch (src.type())
        {
        case CV_8UC1:
            {
                Npp8u nVal = saturate_cast<Npp8u>(value[0]);
                nppSafeCall( nppiCopyConstBorder_8u_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step), srcsz,
                    dst.ptr<Npp8u>(), static_cast<int>(dst.step), dstsz, top, left, nVal) );
                break;
            }
        case CV_8UC4:
            {
                Npp8u nVal[] = {saturate_cast<Npp8u>(value[0]), saturate_cast<Npp8u>(value[1]), saturate_cast<Npp8u>(value[2]), saturate_cast<Npp8u>(value[3])};
                nppSafeCall( nppiCopyConstBorder_8u_C4R(src.ptr<Npp8u>(), static_cast<int>(src.step), srcsz,
                    dst.ptr<Npp8u>(), static_cast<int>(dst.step), dstsz, top, left, nVal) );
                break;
            }
        case CV_32SC1:
            {
                Npp32s nVal = saturate_cast<Npp32s>(value[0]);
                nppSafeCall( nppiCopyConstBorder_32s_C1R(src.ptr<Npp32s>(), static_cast<int>(src.step), srcsz,
                    dst.ptr<Npp32s>(), static_cast<int>(dst.step), dstsz, top, left, nVal) );
                break;
            }
        case CV_32FC1:
            {
                Npp32f val = saturate_cast<Npp32f>(value[0]);
                Npp32s nVal = *(reinterpret_cast<Npp32s_a*>(&val));
                nppSafeCall( nppiCopyConstBorder_32s_C1R(src.ptr<Npp32s>(), static_cast<int>(src.step), srcsz,
                    dst.ptr<Npp32s>(), static_cast<int>(dst.step), dstsz, top, left, nVal) );
                break;
            }
        }

        if (stream == 0)
            cudaSafeCall( cudaDeviceSynchronize() );
    }
    else
    {
        typedef void (*caller_t)(const PtrStepSzb& src, const PtrStepSzb& dst, int top, int left, int borderType, const Scalar& value, cudaStream_t stream);
        static const caller_t callers[6][4] =
        {
            {   copyMakeBorder_caller<uchar, 1>  ,    copyMakeBorder_caller<uchar, 2>   ,    copyMakeBorder_caller<uchar, 3>  ,    copyMakeBorder_caller<uchar, 4>},
            {0/*copyMakeBorder_caller<schar, 1>*/, 0/*copyMakeBorder_caller<schar, 2>*/ , 0/*copyMakeBorder_caller<schar, 3>*/, 0/*copyMakeBorder_caller<schar, 4>*/},
            {   copyMakeBorder_caller<ushort, 1> , 0/*copyMakeBorder_caller<ushort, 2>*/,    copyMakeBorder_caller<ushort, 3> ,    copyMakeBorder_caller<ushort, 4>},
            {   copyMakeBorder_caller<short, 1>  , 0/*copyMakeBorder_caller<short, 2>*/ ,    copyMakeBorder_caller<short, 3>  ,    copyMakeBorder_caller<short, 4>},
            {0/*copyMakeBorder_caller<int,   1>*/, 0/*copyMakeBorder_caller<int,   2>*/ , 0/*copyMakeBorder_caller<int,   3>*/, 0/*copyMakeBorder_caller<int  , 4>*/},
            {   copyMakeBorder_caller<float, 1>  , 0/*copyMakeBorder_caller<float, 2>*/ ,    copyMakeBorder_caller<float, 3>  ,    copyMakeBorder_caller<float ,4>}
        };

        caller_t func = callers[src.depth()][src.channels() - 1];
        CV_Assert(func != 0);

        func(src, dst, top, left, borderType, value, stream);
    }
}
开发者ID:Human,项目名称:opencv,代码行数:79,代码来源:core.cpp

示例2: pyrDown

void cv::gpu::FarnebackOpticalFlow::operator ()(
        const GpuMat &frame0, const GpuMat &frame1, GpuMat &flowx, GpuMat &flowy, Stream &s)
{
    CV_Assert(frame0.type() == CV_8U && frame1.type() == CV_8U);
    CV_Assert(frame0.size() == frame1.size());
    CV_Assert(polyN == 5 || polyN == 7);
    CV_Assert(!fastPyramids || std::abs(pyrScale - 0.5) < 1e-6);

    Stream streams[5];
    if (S(s))
        streams[0] = s;

    Size size = frame0.size();
    GpuMat prevFlowX, prevFlowY, curFlowX, curFlowY;

    flowx.create(size, CV_32F);
    flowy.create(size, CV_32F);
    GpuMat flowx0 = flowx;
    GpuMat flowy0 = flowy;

    // Crop unnecessary levels
    double scale = 1;
    int numLevelsCropped = 0;
    for (; numLevelsCropped < numLevels; numLevelsCropped++)
    {
        scale *= pyrScale;
        if (size.width*scale < MIN_SIZE || size.height*scale < MIN_SIZE)
            break;
    }

    streams[0].enqueueConvert(frame0, frames_[0], CV_32F);
    streams[1].enqueueConvert(frame1, frames_[1], CV_32F);

    if (fastPyramids)
    {
        // Build Gaussian pyramids using pyrDown()
        pyramid0_.resize(numLevelsCropped + 1);
        pyramid1_.resize(numLevelsCropped + 1);
        pyramid0_[0] = frames_[0];
        pyramid1_[0] = frames_[1];
        for (int i = 1; i <= numLevelsCropped; ++i)
        {
            pyrDown(pyramid0_[i - 1], pyramid0_[i], streams[0]);
            pyrDown(pyramid1_[i - 1], pyramid1_[i], streams[1]);
        }
    }

    setPolynomialExpansionConsts(polyN, polySigma);
    device::optflow_farneback::setUpdateMatricesConsts();

    for (int k = numLevelsCropped; k >= 0; k--)
    {
        streams[0].waitForCompletion();

        scale = 1;
        for (int i = 0; i < k; i++)
            scale *= pyrScale;

        double sigma = (1./scale - 1) * 0.5;
        int smoothSize = cvRound(sigma*5) | 1;
        smoothSize = std::max(smoothSize, 3);

        int width = cvRound(size.width*scale);
        int height = cvRound(size.height*scale);

        if (fastPyramids)
        {
            width = pyramid0_[k].cols;
            height = pyramid0_[k].rows;
        }

        if (k > 0)
        {
            curFlowX.create(height, width, CV_32F);
            curFlowY.create(height, width, CV_32F);
        }
        else
        {
            curFlowX = flowx0;
            curFlowY = flowy0;
        }

        if (!prevFlowX.data)
        {
            if (flags & OPTFLOW_USE_INITIAL_FLOW)
            {
#if ENABLE_GPU_RESIZE
                resize(flowx0, curFlowX, Size(width, height), 0, 0, INTER_LINEAR, streams[0]);
                resize(flowy0, curFlowY, Size(width, height), 0, 0, INTER_LINEAR, streams[1]);
                streams[0].enqueueConvert(curFlowX, curFlowX, curFlowX.depth(), scale);
                streams[1].enqueueConvert(curFlowY, curFlowY, curFlowY.depth(), scale);
#else
                Mat tmp1, tmp2;
                flowx0.download(tmp1);
                resize(tmp1, tmp2, Size(width, height), 0, 0, INTER_AREA);
                tmp2 *= scale;
                curFlowX.upload(tmp2);
                flowy0.download(tmp1);
                resize(tmp1, tmp2, Size(width, height), 0, 0, INTER_AREA);
                tmp2 *= scale;
//.........这里部分代码省略.........
开发者ID:Ashwini7,项目名称:smart-python-programs,代码行数:101,代码来源:optical_flow_farneback.cpp

示例3: void

void cv::cuda::warpPerspective(InputArray _src, OutputArray _dst, InputArray _M, Size dsize, int flags, int borderMode, Scalar borderValue, Stream& stream)
{
    GpuMat src = _src.getGpuMat();
    Mat M = _M.getMat();

    CV_Assert( M.rows == 3 && M.cols == 3 );

    const int interpolation = flags & INTER_MAX;

    CV_Assert( src.depth() <= CV_32F && src.channels() <= 4 );
    CV_Assert( interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC );
    CV_Assert( borderMode == BORDER_REFLECT101 || borderMode == BORDER_REPLICATE || borderMode == BORDER_CONSTANT || borderMode == BORDER_REFLECT || borderMode == BORDER_WRAP) ;

    _dst.create(dsize, src.type());
    GpuMat dst = _dst.getGpuMat();

    Size wholeSize;
    Point ofs;
    src.locateROI(wholeSize, ofs);

    static const bool useNppTab[6][4][3] =
    {
        {
            {false, false, true},
            {false, false, false},
            {false, true, true},
            {false, false, false}
        },
        {
            {false, false, false},
            {false, false, false},
            {false, false, false},
            {false, false, false}
        },
        {
            {false, true, true},
            {false, false, false},
            {false, true, true},
            {false, false, false}
        },
        {
            {false, false, false},
            {false, false, false},
            {false, false, false},
            {false, false, false}
        },
        {
            {false, true, true},
            {false, false, false},
            {false, true, true},
            {false, false, true}
        },
        {
            {false, true, true},
            {false, false, false},
            {false, true, true},
            {false, false, true}
        }
    };

    bool useNpp = borderMode == BORDER_CONSTANT && ofs.x == 0 && ofs.y == 0 && useNppTab[src.depth()][src.channels() - 1][interpolation];
    // NPP bug on float data
    useNpp = useNpp && src.depth() != CV_32F;

    if (useNpp)
    {
        typedef void (*func_t)(const cv::cuda::GpuMat& src, cv::cuda::GpuMat& dst, double coeffs[][3], int flags, cudaStream_t stream);

        static const func_t funcs[2][6][4] =
        {
            {
                {NppWarp<CV_8U, nppiWarpPerspective_8u_C1R>::call, 0, NppWarp<CV_8U, nppiWarpPerspective_8u_C3R>::call, NppWarp<CV_8U, nppiWarpPerspective_8u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_16U, nppiWarpPerspective_16u_C1R>::call, 0, NppWarp<CV_16U, nppiWarpPerspective_16u_C3R>::call, NppWarp<CV_16U, nppiWarpPerspective_16u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_32S, nppiWarpPerspective_32s_C1R>::call, 0, NppWarp<CV_32S, nppiWarpPerspective_32s_C3R>::call, NppWarp<CV_32S, nppiWarpPerspective_32s_C4R>::call},
                {NppWarp<CV_32F, nppiWarpPerspective_32f_C1R>::call, 0, NppWarp<CV_32F, nppiWarpPerspective_32f_C3R>::call, NppWarp<CV_32F, nppiWarpPerspective_32f_C4R>::call}
            },
            {
                {NppWarp<CV_8U, nppiWarpPerspectiveBack_8u_C1R>::call, 0, NppWarp<CV_8U, nppiWarpPerspectiveBack_8u_C3R>::call, NppWarp<CV_8U, nppiWarpPerspectiveBack_8u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_16U, nppiWarpPerspectiveBack_16u_C1R>::call, 0, NppWarp<CV_16U, nppiWarpPerspectiveBack_16u_C3R>::call, NppWarp<CV_16U, nppiWarpPerspectiveBack_16u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_32S, nppiWarpPerspectiveBack_32s_C1R>::call, 0, NppWarp<CV_32S, nppiWarpPerspectiveBack_32s_C3R>::call, NppWarp<CV_32S, nppiWarpPerspectiveBack_32s_C4R>::call},
                {NppWarp<CV_32F, nppiWarpPerspectiveBack_32f_C1R>::call, 0, NppWarp<CV_32F, nppiWarpPerspectiveBack_32f_C3R>::call, NppWarp<CV_32F, nppiWarpPerspectiveBack_32f_C4R>::call}
            }
        };

        dst.setTo(borderValue, stream);

        double coeffs[3][3];
        Mat coeffsMat(3, 3, CV_64F, (void*)coeffs);
        M.convertTo(coeffsMat, coeffsMat.type());

        const func_t func = funcs[(flags & WARP_INVERSE_MAP) != 0][src.depth()][src.channels() - 1];
        CV_Assert(func != 0);

        func(src, dst, coeffs, interpolation, StreamAccessor::getStream(stream));
    }
    else
//.........这里部分代码省略.........
开发者ID:cyberCBM,项目名称:DetectO,代码行数:101,代码来源:warp.cpp

示例4: void

void cv::gpu::BruteForceMatcher_GPU_base::knnMatchSingle(const GpuMat& query, const GpuMat& train,
    GpuMat& trainIdx, GpuMat& distance, GpuMat& allDist, int k,
    const GpuMat& mask, Stream& stream)
{
    if (query.empty() || train.empty())
        return;

    using namespace ::cv::gpu::device::bf_knnmatch;

    typedef void (*caller_t)(const DevMem2Db& query, const DevMem2Db& train, int k, const DevMem2Db& mask,
                             const DevMem2Db& trainIdx, const DevMem2Db& distance, const DevMem2Df& allDist,
                             int cc, cudaStream_t stream);

    static const caller_t callers[3][6] =
    {
        {
            matchL1_gpu<unsigned char>, 0/*matchL1_gpu<signed char>*/,
            matchL1_gpu<unsigned short>, matchL1_gpu<short>,
            matchL1_gpu<int>, matchL1_gpu<float>
        },
        {
            0/*matchL2_gpu<unsigned char>*/, 0/*matchL2_gpu<signed char>*/,
            0/*matchL2_gpu<unsigned short>*/, 0/*matchL2_gpu<short>*/,
            0/*matchL2_gpu<int>*/, matchL2_gpu<float>
        },
        {
            matchHamming_gpu<unsigned char>, 0/*matchHamming_gpu<signed char>*/,
            matchHamming_gpu<unsigned short>, 0/*matchHamming_gpu<short>*/,
            matchHamming_gpu<int>, 0/*matchHamming_gpu<float>*/
        }
    };

    CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
    CV_Assert(train.type() == query.type() && train.cols == query.cols);

    const int nQuery = query.rows;
    const int nTrain = train.rows;

    if (k == 2)
    {
        ensureSizeIsEnough(1, nQuery, CV_32SC2, trainIdx);
        ensureSizeIsEnough(1, nQuery, CV_32FC2, distance);
    }
    else
    {
        ensureSizeIsEnough(nQuery, k, CV_32S, trainIdx);
        ensureSizeIsEnough(nQuery, k, CV_32F, distance);
        ensureSizeIsEnough(nQuery, nTrain, CV_32FC1, allDist);
    }

    if (stream)
        stream.enqueueMemSet(trainIdx, Scalar::all(-1));
    else
        trainIdx.setTo(Scalar::all(-1));

    caller_t func = callers[distType][query.depth()];
    CV_Assert(func != 0);

    DeviceInfo info;
    int cc = info.majorVersion() * 10 + info.minorVersion();

    func(query, train, k, mask, trainIdx, distance, allDist, cc, StreamAccessor::getStream(stream));
}
开发者ID:Ashwini7,项目名称:smart-python-programs,代码行数:63,代码来源:brute_force_matcher.cpp

示例5: devcopy

void cv::gpu::Stream::enqueueDownload(const GpuMat& src, Mat& dst)
{
    // if not -> allocation will be done, but after that dst will not point to page locked memory
    CV_Assert(src.cols == dst.cols && src.rows == dst.rows && src.type() == dst.type() );
    devcopy(src, dst, Impl::getStream(impl), cudaMemcpyDeviceToHost);
}
开发者ID:09beezahmad,项目名称:opencv,代码行数:6,代码来源:cudastream.cpp

示例6: csbp_operator

static void csbp_operator(StereoConstantSpaceBP& rthis, GpuMat& mbuf, GpuMat& temp, GpuMat& out, const GpuMat& left, const GpuMat& right, GpuMat& disp, Stream& stream)
{
    CV_DbgAssert(0 < rthis.ndisp && 0 < rthis.iters && 0 < rthis.levels && 0 < rthis.nr_plane
        && left.rows == right.rows && left.cols == right.cols && left.type() == right.type());

    CV_Assert(rthis.levels <= 8 && (left.type() == CV_8UC1 || left.type() == CV_8UC3 || left.type() == CV_8UC4));

    const Scalar zero = Scalar::all(0);

    cudaStream_t cudaStream = StreamAccessor::getStream(stream);

    ////////////////////////////////////////////////////////////////////////////////////////////
    // Init

    int rows = left.rows;
    int cols = left.cols;

    rthis.levels = std::min(rthis.levels, int(log((double)rthis.ndisp) / log(2.0)));
    int levels = rthis.levels;

    // compute sizes
    AutoBuffer<int> buf(levels * 3);
    int* cols_pyr = buf;
    int* rows_pyr = cols_pyr + levels;
    int* nr_plane_pyr = rows_pyr + levels;

    cols_pyr[0]     = cols;
    rows_pyr[0]     = rows;
    nr_plane_pyr[0] = rthis.nr_plane;

    for (int i = 1; i < levels; i++)
    {
        cols_pyr[i]     = cols_pyr[i-1] / 2;
        rows_pyr[i]     = rows_pyr[i-1] / 2;
        nr_plane_pyr[i] = nr_plane_pyr[i-1] * 2;
    }


    GpuMat u[2], d[2], l[2], r[2], disp_selected_pyr[2], data_cost, data_cost_selected;


    //allocate buffers
    int buffers_count = 10; // (up + down + left + right + disp_selected_pyr) * 2
    buffers_count += 2; //  data_cost has twice more rows than other buffers, what's why +2, not +1;
    buffers_count += 1; //  data_cost_selected
    mbuf.create(rows * rthis.nr_plane * buffers_count, cols, DataType<T>::type);

    data_cost          = mbuf.rowRange(0, rows * rthis.nr_plane * 2);
    data_cost_selected = mbuf.rowRange(data_cost.rows, data_cost.rows + rows * rthis.nr_plane);

    for(int k = 0; k < 2; ++k) // in/out
    {
        GpuMat sub1 = mbuf.rowRange(data_cost.rows + data_cost_selected.rows, mbuf.rows);
        GpuMat sub2 = sub1.rowRange((k+0)*sub1.rows/2, (k+1)*sub1.rows/2);

        GpuMat *buf_ptrs[] = { &u[k], &d[k], &l[k], &r[k], &disp_selected_pyr[k] };
        for(int _r = 0; _r < 5; ++_r)
        {
            *buf_ptrs[_r] = sub2.rowRange(_r * sub2.rows/5, (_r+1) * sub2.rows/5);
            assert(buf_ptrs[_r]->cols == cols && buf_ptrs[_r]->rows == rows * rthis.nr_plane);
        }
    };

    size_t elem_step = mbuf.step / sizeof(T);

    Size temp_size = data_cost.size();
    if ((size_t)temp_size.area() < elem_step * rows_pyr[levels - 1] * rthis.ndisp)
        temp_size = Size(static_cast<int>(elem_step), rows_pyr[levels - 1] * rthis.ndisp);

    temp.create(temp_size, DataType<T>::type);

    ////////////////////////////////////////////////////////////////////////////
    // Compute

    load_constants(rthis.ndisp, rthis.max_data_term, rthis.data_weight, rthis.max_disc_term, rthis.disc_single_jump, rthis.min_disp_th, left, right, temp);

    if (stream)
    {
        stream.enqueueMemSet(l[0], zero);
        stream.enqueueMemSet(d[0], zero);
        stream.enqueueMemSet(r[0], zero);
        stream.enqueueMemSet(u[0], zero);

        stream.enqueueMemSet(l[1], zero);
        stream.enqueueMemSet(d[1], zero);
        stream.enqueueMemSet(r[1], zero);
        stream.enqueueMemSet(u[1], zero);

        stream.enqueueMemSet(data_cost, zero);
        stream.enqueueMemSet(data_cost_selected, zero);
    }
    else
    {
        l[0].setTo(zero);
        d[0].setTo(zero);
        r[0].setTo(zero);
        u[0].setTo(zero);

        l[1].setTo(zero);
        d[1].setTo(zero);
//.........这里部分代码省略.........
开发者ID:4auka,项目名称:opencv,代码行数:101,代码来源:stereocsbp.cpp

示例7: void

void cv::gpu::minMaxLoc(const GpuMat& src, double* minVal, double* maxVal, Point* minLoc, Point* maxLoc,
                        const GpuMat& mask, GpuMat& valBuf, GpuMat& locBuf)
{
    using namespace ::cv::gpu::device::matrix_reductions::minmaxloc;

    typedef void (*Caller)(const PtrStepSzb, double*, double*, int[2], int[2], PtrStepb, PtrStepb);
    typedef void (*MaskedCaller)(const PtrStepSzb, const PtrStepb, double*, double*, int[2], int[2], PtrStepb, PtrStepb);

    static Caller multipass_callers[] =
    {
        minMaxLocMultipassCaller<unsigned char>, minMaxLocMultipassCaller<char>,
        minMaxLocMultipassCaller<unsigned short>, minMaxLocMultipassCaller<short>,
        minMaxLocMultipassCaller<int>, minMaxLocMultipassCaller<float>, 0
    };

    static Caller singlepass_callers[] =
    {
        minMaxLocCaller<unsigned char>, minMaxLocCaller<char>,
        minMaxLocCaller<unsigned short>, minMaxLocCaller<short>,
        minMaxLocCaller<int>, minMaxLocCaller<float>, minMaxLocCaller<double>
    };

    static MaskedCaller masked_multipass_callers[] =
    {
        minMaxLocMaskMultipassCaller<unsigned char>, minMaxLocMaskMultipassCaller<char>,
        minMaxLocMaskMultipassCaller<unsigned short>, minMaxLocMaskMultipassCaller<short>,
        minMaxLocMaskMultipassCaller<int>, minMaxLocMaskMultipassCaller<float>, 0
    };

    static MaskedCaller masked_singlepass_callers[] =
    {
        minMaxLocMaskCaller<unsigned char>, minMaxLocMaskCaller<char>,
        minMaxLocMaskCaller<unsigned short>, minMaxLocMaskCaller<short>,
        minMaxLocMaskCaller<int>, minMaxLocMaskCaller<float>, minMaxLocMaskCaller<double>
    };

    CV_Assert(src.depth() <= CV_64F);
    CV_Assert(src.channels() == 1);
    CV_Assert(mask.empty() || (mask.type() == CV_8U && src.size() == mask.size()));

    if (src.depth() == CV_64F)
    {
        if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
            CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
    }

    double minVal_;
    if (!minVal) minVal = &minVal_;
    double maxVal_;
    if (!maxVal) maxVal = &maxVal_;
    int minLoc_[2];
    int maxLoc_[2];

    Size valbuf_size, locbuf_size;
    getBufSizeRequired(src.cols, src.rows, static_cast<int>(src.elemSize()), valbuf_size.width,
                       valbuf_size.height, locbuf_size.width, locbuf_size.height);
    ensureSizeIsEnough(valbuf_size, CV_8U, valBuf);
    ensureSizeIsEnough(locbuf_size, CV_8U, locBuf);

    if (mask.empty())
    {
        Caller* callers = multipass_callers;
        if (TargetArchs::builtWith(GLOBAL_ATOMICS) && DeviceInfo().supports(GLOBAL_ATOMICS))
            callers = singlepass_callers;

        Caller caller = callers[src.type()];
        CV_Assert(caller != 0);
        caller(src, minVal, maxVal, minLoc_, maxLoc_, valBuf, locBuf);
    }
    else
    {
        MaskedCaller* callers = masked_multipass_callers;
        if (TargetArchs::builtWith(GLOBAL_ATOMICS) && DeviceInfo().supports(GLOBAL_ATOMICS))
            callers = masked_singlepass_callers;

        MaskedCaller caller = callers[src.type()];
        CV_Assert(caller != 0);
        caller(src, mask, minVal, maxVal, minLoc_, maxLoc_, valBuf, locBuf);
    }

    if (minLoc) {
        minLoc->x = minLoc_[0];
        minLoc->y = minLoc_[1];
    }
    if (maxLoc) {
        maxLoc->x = maxLoc_[0];
        maxLoc->y = maxLoc_[1];
    }
}
开发者ID:jepierre,项目名称:opencv,代码行数:89,代码来源:matrix_reductions.cpp

示例8: h

void cv::gpu::LUT(const GpuMat& src, const Mat& lut, GpuMat& dst, Stream& s)
{
    class LevelsInit
    {
    public:
        Npp32s pLevels[256];
        const Npp32s* pLevels3[3];
        int nValues3[3];

#if (CUDA_VERSION > 4020)
        GpuMat d_pLevels;
#endif

        LevelsInit()
        {
            nValues3[0] = nValues3[1] = nValues3[2] = 256;
            for (int i = 0; i < 256; ++i)
                pLevels[i] = i;


#if (CUDA_VERSION <= 4020)
            pLevels3[0] = pLevels3[1] = pLevels3[2] = pLevels;
#else
            d_pLevels.upload(Mat(1, 256, CV_32S, pLevels));
            pLevels3[0] = pLevels3[1] = pLevels3[2] = d_pLevels.ptr<Npp32s>();
#endif
        }
    };
    static LevelsInit lvls;

    int cn = src.channels();

    CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC3);
    CV_Assert(lut.depth() == CV_8U && (lut.channels() == 1 || lut.channels() == cn) && lut.rows * lut.cols == 256 && lut.isContinuous());

    dst.create(src.size(), CV_MAKETYPE(lut.depth(), cn));

    NppiSize sz;
    sz.height = src.rows;
    sz.width = src.cols;

    Mat nppLut;
    lut.convertTo(nppLut, CV_32S);

    cudaStream_t stream = StreamAccessor::getStream(s);

    NppStreamHandler h(stream);

    if (src.type() == CV_8UC1)
    {
#if (CUDA_VERSION <= 4020)
        nppSafeCall( nppiLUT_Linear_8u_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step),
            dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz, nppLut.ptr<Npp32s>(), lvls.pLevels, 256) );
#else
        GpuMat d_nppLut(Mat(1, 256, CV_32S, nppLut.data));
        nppSafeCall( nppiLUT_Linear_8u_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step),
            dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz, d_nppLut.ptr<Npp32s>(), lvls.d_pLevels.ptr<Npp32s>(), 256) );
#endif
    }
    else
    {
        const Npp32s* pValues3[3];

        Mat nppLut3[3];
        if (nppLut.channels() == 1)
        {
#if (CUDA_VERSION <= 4020)
            pValues3[0] = pValues3[1] = pValues3[2] = nppLut.ptr<Npp32s>();
#else
            GpuMat d_nppLut(Mat(1, 256, CV_32S, nppLut.data));
            pValues3[0] = pValues3[1] = pValues3[2] = d_nppLut.ptr<Npp32s>();
#endif
        }
        else
        {
            cv::split(nppLut, nppLut3);

#if (CUDA_VERSION <= 4020)
            pValues3[0] = nppLut3[0].ptr<Npp32s>();
            pValues3[1] = nppLut3[1].ptr<Npp32s>();
            pValues3[2] = nppLut3[2].ptr<Npp32s>();
#else
            GpuMat d_nppLut0(Mat(1, 256, CV_32S, nppLut3[0].data));
            GpuMat d_nppLut1(Mat(1, 256, CV_32S, nppLut3[1].data));
            GpuMat d_nppLut2(Mat(1, 256, CV_32S, nppLut3[2].data));

            pValues3[0] = d_nppLut0.ptr<Npp32s>();
            pValues3[1] = d_nppLut1.ptr<Npp32s>();
            pValues3[2] = d_nppLut2.ptr<Npp32s>();
#endif
        }

        nppSafeCall( nppiLUT_Linear_8u_C3R(src.ptr<Npp8u>(), static_cast<int>(src.step),
            dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz, pValues3, lvls.pLevels3, lvls.nValues3) );
    }

    if (stream == 0)
        cudaSafeCall( cudaDeviceSynchronize() );
}
开发者ID:09beezahmad,项目名称:opencv,代码行数:99,代码来源:arithm.cpp

示例9: void

void cv::gpu::warpPerspective(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags, int borderMode, Scalar borderValue, Stream& s)
{
    CV_Assert(M.rows == 3 && M.cols == 3);

    int interpolation = flags & INTER_MAX;

    CV_Assert(src.depth() <= CV_32F && src.channels() <= 4);
    CV_Assert(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC);
    CV_Assert(borderMode == BORDER_REFLECT101 || borderMode == BORDER_REPLICATE || borderMode == BORDER_CONSTANT || borderMode == BORDER_REFLECT || borderMode == BORDER_WRAP);

    Size wholeSize;
    Point ofs;
    src.locateROI(wholeSize, ofs);

    static const bool useNppTab[6][4][3] =
    {
        {
            {false, false, true},
            {false, false, false},
            {false, true, true},
            {false, false, false}
        },
        {
            {false, false, false},
            {false, false, false},
            {false, false, false},
            {false, false, false}
        },
        {
            {false, true, true},
            {false, false, false},
            {false, true, true},
            {false, false, false}
        },
        {
            {false, false, false},
            {false, false, false},
            {false, false, false},
            {false, false, false}
        },
        {
            {false, true, true},
            {false, false, false},
            {false, true, true},
            {false, false, true}
        },
        {
            {false, true, true},
            {false, false, false},
            {false, true, true},
            {false, false, true}
        }
    };

    bool useNpp = borderMode == BORDER_CONSTANT;
    useNpp = useNpp && useNppTab[src.depth()][src.channels() - 1][interpolation];
    #ifdef linux
        // NPP bug on float data
        useNpp = useNpp && src.depth() != CV_32F;
    #endif

    if (useNpp)
    {
        typedef void (*func_t)(const cv::gpu::GpuMat& src, cv::Size wholeSize, cv::Point ofs, cv::gpu::GpuMat& dst, double coeffs[][3], cv::Size dsize, int flags, cudaStream_t stream);

        static const func_t funcs[2][6][4] =
        {
            {
                {NppWarp<CV_8U, nppiWarpPerspective_8u_C1R>::call, 0, NppWarp<CV_8U, nppiWarpPerspective_8u_C3R>::call, NppWarp<CV_8U, nppiWarpPerspective_8u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_16U, nppiWarpPerspective_16u_C1R>::call, 0, NppWarp<CV_16U, nppiWarpPerspective_16u_C3R>::call, NppWarp<CV_16U, nppiWarpPerspective_16u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_32S, nppiWarpPerspective_32s_C1R>::call, 0, NppWarp<CV_32S, nppiWarpPerspective_32s_C3R>::call, NppWarp<CV_32S, nppiWarpPerspective_32s_C4R>::call},
                {NppWarp<CV_32F, nppiWarpPerspective_32f_C1R>::call, 0, NppWarp<CV_32F, nppiWarpPerspective_32f_C3R>::call, NppWarp<CV_32F, nppiWarpPerspective_32f_C4R>::call}
            },
            {
                {NppWarp<CV_8U, nppiWarpPerspectiveBack_8u_C1R>::call, 0, NppWarp<CV_8U, nppiWarpPerspectiveBack_8u_C3R>::call, NppWarp<CV_8U, nppiWarpPerspectiveBack_8u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_16U, nppiWarpPerspectiveBack_16u_C1R>::call, 0, NppWarp<CV_16U, nppiWarpPerspectiveBack_16u_C3R>::call, NppWarp<CV_16U, nppiWarpPerspectiveBack_16u_C4R>::call},
                {0, 0, 0, 0},
                {NppWarp<CV_32S, nppiWarpPerspectiveBack_32s_C1R>::call, 0, NppWarp<CV_32S, nppiWarpPerspectiveBack_32s_C3R>::call, NppWarp<CV_32S, nppiWarpPerspectiveBack_32s_C4R>::call},
                {NppWarp<CV_32F, nppiWarpPerspectiveBack_32f_C1R>::call, 0, NppWarp<CV_32F, nppiWarpPerspectiveBack_32f_C3R>::call, NppWarp<CV_32F, nppiWarpPerspectiveBack_32f_C4R>::call}
            }
        };

        double coeffs[3][3];
        Mat coeffsMat(3, 3, CV_64F, (void*)coeffs);
        M.convertTo(coeffsMat, coeffsMat.type());

        const func_t func = funcs[(flags & WARP_INVERSE_MAP) != 0][src.depth()][src.channels() - 1];
        CV_Assert(func != 0);

        func(src, wholeSize, ofs, dst, coeffs, dsize, interpolation, StreamAccessor::getStream(s));
    }
    else
    {
        using namespace cv::gpu::device::imgproc;

        typedef void (*func_t)(DevMem2Db src, DevMem2Db srcWhole, int xoff, int yoff, float coeffs[2 * 3], DevMem2Db dst, int interpolation,
            int borderMode, const float* borderValue, cudaStream_t stream, int cc);
//.........这里部分代码省略.........
开发者ID:Ashwini7,项目名称:smart-python-programs,代码行数:101,代码来源:warp.cpp

示例10: NppStatus

void cv::gpu::resize(const GpuMat& src, GpuMat& dst, Size dsize, double fx, double fy, int interpolation, Stream& s)
{
    CV_Assert(src.depth() <= CV_32F && src.channels() <= 4);
    CV_Assert(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR
            || interpolation == INTER_CUBIC || interpolation == INTER_AREA);
    CV_Assert(!(dsize == Size()) || (fx > 0 && fy > 0));

    if (dsize == Size())
        dsize = Size(saturate_cast<int>(src.cols * fx), saturate_cast<int>(src.rows * fy));
    else
    {
        fx = static_cast<double>(dsize.width) / src.cols;
        fy = static_cast<double>(dsize.height) / src.rows;
    }
    if (dsize != dst.size())
        dst.create(dsize, src.type());

    if (dsize == src.size())
    {
        if (s)
            s.enqueueCopy(src, dst);
        else
            src.copyTo(dst);
        return;
    }

    cudaStream_t stream = StreamAccessor::getStream(s);

    Size wholeSize;
    Point ofs;
    src.locateROI(wholeSize, ofs);

    bool useNpp = (src.type() == CV_8UC1 || src.type() == CV_8UC4);
    useNpp = useNpp && (interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || (src.type() == CV_8UC4 && interpolation != INTER_AREA));

    if (useNpp)
    {
        typedef NppStatus (*func_t)(const Npp8u * pSrc, NppiSize oSrcSize, int nSrcStep, NppiRect oSrcROI, Npp8u * pDst, int nDstStep, NppiSize dstROISize,
                                    double xFactor, double yFactor, int eInterpolation);

        const func_t funcs[4] = { nppiResize_8u_C1R, 0, 0, nppiResize_8u_C4R };

        static const int npp_inter[] = {NPPI_INTER_NN, NPPI_INTER_LINEAR, NPPI_INTER_CUBIC, 0, NPPI_INTER_LANCZOS};

        NppiSize srcsz;
        srcsz.width  = wholeSize.width;
        srcsz.height = wholeSize.height;

        NppiRect srcrect;
        srcrect.x = ofs.x;
        srcrect.y = ofs.y;
        srcrect.width  = src.cols;
        srcrect.height = src.rows;

        NppiSize dstsz;
        dstsz.width  = dst.cols;
        dstsz.height = dst.rows;

        NppStreamHandler h(stream);

        nppSafeCall( funcs[src.channels() - 1](src.datastart, srcsz, static_cast<int>(src.step), srcrect,
                dst.ptr<Npp8u>(), static_cast<int>(dst.step), dstsz, fx, fy, npp_inter[interpolation]) );

        if (stream == 0)
            cudaSafeCall( cudaDeviceSynchronize() );
    }
    else
    {
        using namespace ::cv::gpu::device::imgproc;

        typedef void (*func_t)(DevMem2Db src, DevMem2Db srcWhole, int xoff, int yoff, float fx, float fy, DevMem2Db dst, int interpolation, cudaStream_t stream);

        static const func_t funcs[6][4] =
        {
            {resize_gpu<uchar>      , 0 /*resize_gpu<uchar2>*/ , resize_gpu<uchar3>     , resize_gpu<uchar4>     },
            {0 /*resize_gpu<schar>*/, 0 /*resize_gpu<char2>*/  , 0 /*resize_gpu<char3>*/, 0 /*resize_gpu<char4>*/},
            {resize_gpu<ushort>     , 0 /*resize_gpu<ushort2>*/, resize_gpu<ushort3>    , resize_gpu<ushort4>    },
            {resize_gpu<short>      , 0 /*resize_gpu<short2>*/ , resize_gpu<short3>     , resize_gpu<short4>     },
            {0 /*resize_gpu<int>*/  , 0 /*resize_gpu<int2>*/   , 0 /*resize_gpu<int3>*/ , 0 /*resize_gpu<int4>*/ },
            {resize_gpu<float>      , 0 /*resize_gpu<float2>*/ , resize_gpu<float3>     , resize_gpu<float4>     }
        };

        const func_t func = funcs[src.depth()][src.channels() - 1];
        CV_Assert(func != 0);

        func(src, DevMem2Db(wholeSize.height, wholeSize.width, src.datastart, src.step), ofs.x, ofs.y,
            static_cast<float>(1.0 / fx), static_cast<float>(1.0 / fy), dst, interpolation, stream);
    }
}
开发者ID:BRAINSia,项目名称:OpenCV_TruncatedSVN,代码行数:89,代码来源:resize.cpp

示例11: createContinuous

void cv::cuda::dft(InputArray _src, OutputArray _dst, Size dft_size, int flags, Stream& stream)
{
#ifndef HAVE_CUFFT
    (void) _src;
    (void) _dst;
    (void) dft_size;
    (void) flags;
    (void) stream;
    throw_no_cuda();
#else
    GpuMat src = _src.getGpuMat();

    CV_Assert( src.type() == CV_32FC1 || src.type() == CV_32FC2 );

    // We don't support unpacked output (in the case of real input)
    CV_Assert( !(flags & DFT_COMPLEX_OUTPUT) );

    const bool is_1d_input       = (dft_size.height == 1) || (dft_size.width == 1);
    const bool is_row_dft        = (flags & DFT_ROWS) != 0;
    const bool is_scaled_dft     = (flags & DFT_SCALE) != 0;
    const bool is_inverse        = (flags & DFT_INVERSE) != 0;
    const bool is_complex_input  = src.channels() == 2;
    const bool is_complex_output = !(flags & DFT_REAL_OUTPUT);

    // We don't support real-to-real transform
    CV_Assert( is_complex_input || is_complex_output );

    GpuMat src_cont = src;

    // Make sure here we work with the continuous input,
    // as CUFFT can't handle gaps
    createContinuous(src.rows, src.cols, src.type(), src_cont);
    if (src_cont.data != src.data)
        src.copyTo(src_cont, stream);

    Size dft_size_opt = dft_size;
    if (is_1d_input && !is_row_dft)
    {
        // If the source matrix is single column handle it as single row
        dft_size_opt.width = std::max(dft_size.width, dft_size.height);
        dft_size_opt.height = std::min(dft_size.width, dft_size.height);
    }

    CV_Assert( dft_size_opt.width > 1 );

    cufftType dft_type = CUFFT_R2C;
    if (is_complex_input)
        dft_type = is_complex_output ? CUFFT_C2C : CUFFT_C2R;

    cufftHandle plan;
    if (is_1d_input || is_row_dft)
        cufftSafeCall( cufftPlan1d(&plan, dft_size_opt.width, dft_type, dft_size_opt.height) );
    else
        cufftSafeCall( cufftPlan2d(&plan, dft_size_opt.height, dft_size_opt.width, dft_type) );

    cufftSafeCall( cufftSetStream(plan, StreamAccessor::getStream(stream)) );

    if (is_complex_input)
    {
        if (is_complex_output)
        {
            createContinuous(dft_size, CV_32FC2, _dst);
            GpuMat dst = _dst.getGpuMat();

            cufftSafeCall(cufftExecC2C(
                              plan, src_cont.ptr<cufftComplex>(), dst.ptr<cufftComplex>(),
                              is_inverse ? CUFFT_INVERSE : CUFFT_FORWARD));
        }
        else
        {
            createContinuous(dft_size, CV_32F, _dst);
            GpuMat dst = _dst.getGpuMat();

            cufftSafeCall(cufftExecC2R(
                              plan, src_cont.ptr<cufftComplex>(), dst.ptr<cufftReal>()));
        }
    }
    else
    {
        // We could swap dft_size for efficiency. Here we must reflect it
        if (dft_size == dft_size_opt)
            createContinuous(Size(dft_size.width / 2 + 1, dft_size.height), CV_32FC2, _dst);
        else
            createContinuous(Size(dft_size.width, dft_size.height / 2 + 1), CV_32FC2, _dst);

        GpuMat dst = _dst.getGpuMat();

        cufftSafeCall(cufftExecR2C(
                          plan, src_cont.ptr<cufftReal>(), dst.ptr<cufftComplex>()));
    }

    cufftSafeCall( cufftDestroy(plan) );

    if (is_scaled_dft)
        cuda::multiply(_dst, Scalar::all(1. / dft_size.area()), _dst, 1, -1, stream);

#endif
}
开发者ID:derfred,项目名称:opencv,代码行数:98,代码来源:arithm.cpp

示例12: void

void cv::gpu::minMax(const GpuMat& src, double* minVal, double* maxVal, const GpuMat& mask, GpuMat& buf)
{
    using namespace mathfunc::minmax;

    typedef void (*Caller)(const DevMem2D, double*, double*, PtrStep);
    typedef void (*MaskedCaller)(const DevMem2D, const PtrStep, double*, double*, PtrStep);

    static Caller multipass_callers[7] = { 
            minMaxMultipassCaller<unsigned char>, minMaxMultipassCaller<char>, 
            minMaxMultipassCaller<unsigned short>, minMaxMultipassCaller<short>, 
            minMaxMultipassCaller<int>, minMaxMultipassCaller<float>, 0 };

    static Caller singlepass_callers[7] = { 
            minMaxCaller<unsigned char>, minMaxCaller<char>, 
            minMaxCaller<unsigned short>, minMaxCaller<short>, 
            minMaxCaller<int>, minMaxCaller<float>, minMaxCaller<double> };

    static MaskedCaller masked_multipass_callers[7] = { 
            minMaxMaskMultipassCaller<unsigned char>, minMaxMaskMultipassCaller<char>, 
            minMaxMaskMultipassCaller<unsigned short>, minMaxMaskMultipassCaller<short>,
            minMaxMaskMultipassCaller<int>, minMaxMaskMultipassCaller<float>, 0 };

    static MaskedCaller masked_singlepass_callers[7] = { 
            minMaxMaskCaller<unsigned char>, minMaxMaskCaller<char>, 
            minMaxMaskCaller<unsigned short>, minMaxMaskCaller<short>, 
            minMaxMaskCaller<int>, minMaxMaskCaller<float>, 
            minMaxMaskCaller<double> };

    CV_Assert(src.channels() == 1);

    CV_Assert(mask.empty() || (mask.type() == CV_8U && src.size() == mask.size()));

    CV_Assert(src.type() != CV_64F || (TargetArchs::builtWith(NATIVE_DOUBLE) && 
                                       DeviceInfo().supports(NATIVE_DOUBLE)));

    double minVal_; if (!minVal) minVal = &minVal_;
    double maxVal_; if (!maxVal) maxVal = &maxVal_;
    
    Size buf_size;
    getBufSizeRequired(src.cols, src.rows, static_cast<int>(src.elemSize()), buf_size.width, buf_size.height);
    ensureSizeIsEnough(buf_size, CV_8U, buf);

    if (mask.empty())
    {
        Caller* callers = multipass_callers;
        if (TargetArchs::builtWith(GLOBAL_ATOMICS) && DeviceInfo().supports(GLOBAL_ATOMICS))
            callers = singlepass_callers;

        Caller caller = callers[src.type()];
        if (!caller) CV_Error(CV_StsBadArg, "minMax: unsupported type");
        caller(src, minVal, maxVal, buf);
    }
    else
    {
        MaskedCaller* callers = masked_multipass_callers;
        if (TargetArchs::builtWith(GLOBAL_ATOMICS) && DeviceInfo().supports(GLOBAL_ATOMICS))
            callers = masked_singlepass_callers;

        MaskedCaller caller = callers[src.type()];
        if (!caller) CV_Error(CV_StsBadArg, "minMax: unsupported type");
        caller(src, mask, minVal, maxVal, buf);
    }
}
开发者ID:JaehyunAhn,项目名称:Basic_OpenCV_utilization,代码行数:63,代码来源:matrix_reductions.cpp

示例13:

void cv::gpu::DisparityBilateralFilter::operator()(const GpuMat& disp, const GpuMat& img, GpuMat& dst, Stream& stream)
{
    CV_DbgAssert(0 < ndisp && 0 < radius && 0 < iters);
    CV_Assert(disp.rows == img.rows && disp.cols == img.cols && (disp.type() == CV_8U || disp.type() == CV_16S) && (img.type() == CV_8UC1 || img.type() == CV_8UC3));
    operators[disp.type()](ndisp, radius, iters, edge_threshold, max_disc_threshold, table_color, table_space, disp, img, dst, stream);
}
开发者ID:malcolmreynolds,项目名称:OpenCV,代码行数:6,代码来源:bilateral_filter.cpp

示例14: skinDetect

Mat visionUtils::skinDetect(Mat captureframe, Mat3b *skinDetectHSV, Mat *skinMask, std::vector<int> adaptiveHSV, int minPixelSize, int imgBlurPixels, int imgMorphPixels, int singleRegionChoice, bool displayFaces)
{

    if (adaptiveHSV.size()!=6 || adaptiveHSV.empty())
    {
        adaptiveHSV.clear();
        adaptiveHSV.push_back(5);
        adaptiveHSV.push_back(38);
        adaptiveHSV.push_back(51);
        adaptiveHSV.push_back(17);
        adaptiveHSV.push_back(250);
        adaptiveHSV.push_back(242);
    }


    //int step = 0;
    Mat3b frameTemp;
    Mat3b frame;
    // Forcing resize to 640x480 -> all thresholds / pixel filters configured for this size.....
    // Note returned to original size at end...
    Size s = captureframe.size();
    cv::resize(captureframe,captureframe,Size(640,480));



    if (useGPU)
    {
        GpuMat imgGPU, imgGPUHSV;
        imgGPU.upload(captureframe);
        cv::cvtColor(imgGPU, imgGPUHSV, CV_BGR2HSV);
        GaussianBlur(imgGPUHSV, imgGPUHSV, Size(imgBlurPixels,imgBlurPixels), 1, 1);
        imgGPUHSV.download(frameTemp);
    }
    else
    {
        cv::cvtColor(captureframe, frameTemp, CV_BGR2HSV);
        GaussianBlur(frameTemp, frameTemp, Size(imgBlurPixels,imgBlurPixels), 1, 1);
    }

    // Potential FASTER VERSION using inRange
    Mat frameThreshold = Mat::zeros(frameTemp.rows,frameTemp.cols, CV_8UC1);
    Mat hsvMin = (Mat_<int>(1,3) << adaptiveHSV[0], adaptiveHSV[1],adaptiveHSV[2] );
    Mat hsvMax = (Mat_<int>(1,3) << adaptiveHSV[3], adaptiveHSV[4],adaptiveHSV[5] );
    inRange(frameTemp,hsvMin ,hsvMax, frameThreshold);
    frameTemp.copyTo(frame,frameThreshold);

    /* BGR CONVERSION AND THRESHOLD */
    Mat1b frame_gray;

    // send HSV to skinDetectHSV for return
    *skinDetectHSV=frame.clone();

    cv::cvtColor(frame, frame_gray, CV_BGR2GRAY);


    // Adaptive thresholding technique
    // 1. Threshold data to find main areas of skin
    adaptiveThreshold(frame_gray,frame_gray,255,ADAPTIVE_THRESH_GAUSSIAN_C,THRESH_BINARY_INV,9,1);


    if (useGPU)
    {
        GpuMat imgGPU;
        imgGPU.upload(frame_gray);
        // 2. Fill in thresholded areas
#if CV_MAJOR_VERSION == 2
        gpu::morphologyEx(imgGPU, imgGPU, CV_MOP_CLOSE, Mat1b(imgMorphPixels,imgMorphPixels,1), Point(-1, -1), 2);
        gpu::GaussianBlur(imgGPU, imgGPU, Size(imgBlurPixels,imgBlurPixels), 1, 1);
#elif CV_MAJOR_VERSION == 3
        //TODO: Check if that's correct
        Mat element = getStructuringElement(MORPH_RECT, Size(imgMorphPixels, imgMorphPixels), Point(-1, -1));
        Ptr<cuda::Filter> closeFilter = cuda::createMorphologyFilter(MORPH_CLOSE, imgGPU.type(), element, Point(-1, -1), 2);
        closeFilter->apply(imgGPU, imgGPU);
        cv::Ptr<cv::cuda::Filter> gaussianFilter = cv::cuda::createGaussianFilter(imgGPU.type(), imgGPU.type(), Size(imgMorphPixels, imgMorphPixels), 1, 1);
        gaussianFilter->apply(imgGPU, imgGPU);
#endif

        imgGPU.download(frame_gray);
    }
    else
    {
        // 2. Fill in thresholded areas
        morphologyEx(frame_gray, frame_gray, CV_MOP_CLOSE, Mat1b(imgMorphPixels,imgMorphPixels,1), Point(-1, -1), 2);
        GaussianBlur(frame_gray, frame_gray, Size(imgBlurPixels,imgBlurPixels), 1, 1);
        // Select single largest region from image, if singleRegionChoice is selected (1)
    }


    if (singleRegionChoice)
    {
        *skinMask = cannySegmentation(frame_gray, -1, displayFaces);
    }
    else // Detect each separate block and remove blobs smaller than a few pixels
    {
        *skinMask = cannySegmentation(frame_gray, minPixelSize, displayFaces);
    }

    // Just return skin
    Mat frame_skin;
    captureframe.copyTo(frame_skin,*skinMask);  // Copy captureframe data to frame_skin, using mask from frame_ttt
//.........这里部分代码省略.........
开发者ID:towardthesea,项目名称:wysiwyd,代码行数:101,代码来源:visionUtils.cpp

示例15: void

void cv::gpu::BFMatcher_GPU::knnMatchSingle(const GpuMat& query, const GpuMat& train,
    GpuMat& trainIdx, GpuMat& distance, GpuMat& allDist, int k,
    const GpuMat& mask, Stream& stream)
{
    if (query.empty() || train.empty())
        return;

    using namespace cv::gpu::device::bf_knnmatch;

    typedef void (*caller_t)(const PtrStepSzb& query, const PtrStepSzb& train, int k, const PtrStepSzb& mask,
                             const PtrStepSzb& trainIdx, const PtrStepSzb& distance, const PtrStepSzf& allDist,
                             cudaStream_t stream);

    static const caller_t callersL1[] =
    {
        matchL1_gpu<unsigned char>, 0/*matchL1_gpu<signed char>*/,
        matchL1_gpu<unsigned short>, matchL1_gpu<short>,
        matchL1_gpu<int>, matchL1_gpu<float>
    };
    static const caller_t callersL2[] =
    {
        0/*matchL2_gpu<unsigned char>*/, 0/*matchL2_gpu<signed char>*/,
        0/*matchL2_gpu<unsigned short>*/, 0/*matchL2_gpu<short>*/,
        0/*matchL2_gpu<int>*/, matchL2_gpu<float>
    };
    static const caller_t callersHamming[] =
    {
        matchHamming_gpu<unsigned char>, 0/*matchHamming_gpu<signed char>*/,
        matchHamming_gpu<unsigned short>, 0/*matchHamming_gpu<short>*/,
        matchHamming_gpu<int>, 0/*matchHamming_gpu<float>*/
    };

    CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
    CV_Assert(train.type() == query.type() && train.cols == query.cols);
    CV_Assert(norm == NORM_L1 || norm == NORM_L2 || norm == NORM_HAMMING);

    const caller_t* callers = norm == NORM_L1 ? callersL1 : norm == NORM_L2 ? callersL2 : callersHamming;

    const int nQuery = query.rows;
    const int nTrain = train.rows;

    if (k == 2)
    {
        ensureSizeIsEnough(1, nQuery, CV_32SC2, trainIdx);
        ensureSizeIsEnough(1, nQuery, CV_32FC2, distance);
    }
    else
    {
        ensureSizeIsEnough(nQuery, k, CV_32S, trainIdx);
        ensureSizeIsEnough(nQuery, k, CV_32F, distance);
        ensureSizeIsEnough(nQuery, nTrain, CV_32FC1, allDist);
    }

    if (stream)
        stream.enqueueMemSet(trainIdx, Scalar::all(-1));
    else
        trainIdx.setTo(Scalar::all(-1));

    caller_t func = callers[query.depth()];
    CV_Assert(func != 0);

    func(query, train, k, mask, trainIdx, distance, allDist, StreamAccessor::getStream(stream));
}
开发者ID:5kg,项目名称:opencv,代码行数:63,代码来源:brute_force_matcher.cpp


注:本文中的GpuMat::type方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。