当前位置: 首页>>代码示例>>C++>>正文


C++ GpuMat::copyTo方法代码示例

本文整理汇总了C++中GpuMat::copyTo方法的典型用法代码示例。如果您正苦于以下问题:C++ GpuMat::copyTo方法的具体用法?C++ GpuMat::copyTo怎么用?C++ GpuMat::copyTo使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在GpuMat的用法示例。


在下文中一共展示了GpuMat::copyTo方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: sz

void cv::gpu::ORB_GPU::buildScalePyramids(const GpuMat& image, const GpuMat& mask)
{
    CV_Assert(image.type() == CV_8UC1);
    CV_Assert(mask.empty() || (mask.type() == CV_8UC1 && mask.size() == image.size()));

    imagePyr_.resize(nLevels_);
    maskPyr_.resize(nLevels_);

    for (int level = 0; level < nLevels_; ++level)
    {
        float scale = 1.0f / getScale(scaleFactor_, firstLevel_, level);

        Size sz(cvRound(image.cols * scale), cvRound(image.rows * scale));

        ensureSizeIsEnough(sz, image.type(), imagePyr_[level]);
        ensureSizeIsEnough(sz, CV_8UC1, maskPyr_[level]);
        maskPyr_[level].setTo(Scalar::all(255));

        // Compute the resized image
        if (level != firstLevel_)
        {
            if (level < firstLevel_)
            {
                resize(image, imagePyr_[level], sz, 0, 0, INTER_LINEAR);

                if (!mask.empty())
                    resize(mask, maskPyr_[level], sz, 0, 0, INTER_LINEAR);
            }
            else
            {
                resize(imagePyr_[level - 1], imagePyr_[level], sz, 0, 0, INTER_LINEAR);

                if (!mask.empty())
                {
                    resize(maskPyr_[level - 1], maskPyr_[level], sz, 0, 0, INTER_LINEAR);
                    threshold(maskPyr_[level], maskPyr_[level], 254, 0, THRESH_TOZERO);
                }
            }
        }
        else
        {
            image.copyTo(imagePyr_[level]);

            if (!mask.empty())
                mask.copyTo(maskPyr_[level]);
        }

        // Filter keypoints by image border
        ensureSizeIsEnough(sz, CV_8UC1, buf_);
        buf_.setTo(Scalar::all(0));
        Rect inner(edgeThreshold_, edgeThreshold_, sz.width - 2 * edgeThreshold_, sz.height - 2 * edgeThreshold_);
        buf_(inner).setTo(Scalar::all(255));

        bitwise_and(maskPyr_[level], buf_, maskPyr_[level]);
    }
}
开发者ID:4auka,项目名称:opencv,代码行数:56,代码来源:orb.cpp

示例2: if

void cv::gpu::normalize(const GpuMat& src, GpuMat& dst, double a, double b, int norm_type, int dtype, const GpuMat& mask, GpuMat& norm_buf, GpuMat& cvt_buf)
{
    double scale = 1, shift = 0;
    if (norm_type == NORM_MINMAX)
    {
        double smin = 0, smax = 0;
        double dmin = std::min(a, b), dmax = std::max(a, b);
        minMax(src, &smin, &smax, mask, norm_buf);
        scale = (dmax - dmin) * (smax - smin > numeric_limits<double>::epsilon() ? 1.0 / (smax - smin) : 0.0);
        shift = dmin - smin * scale;
    }
    else if (norm_type == NORM_L2 || norm_type == NORM_L1 || norm_type == NORM_INF)
    {
        scale = norm(src, norm_type, mask, norm_buf);
        scale = scale > numeric_limits<double>::epsilon() ? a / scale : 0.0;
        shift = 0;
    }
    else
    {
        CV_Error(CV_StsBadArg, "Unknown/unsupported norm type");
    }

    if (mask.empty())
    {
        src.convertTo(dst, dtype, scale, shift);
    }
    else
    {
        src.convertTo(cvt_buf, dtype, scale, shift);
        cvt_buf.copyTo(dst, mask);
    }
}
开发者ID:LiliMeng,项目名称:opencv-2,代码行数:32,代码来源:arithm.cpp

示例3: split

    void split(const GpuMat& src, GpuMat* dst, const cudaStream_t& stream) 
    {
        CV_Assert(dst);

        bool double_ok = TargetArchs::builtWith(NATIVE_DOUBLE) && 
                         DeviceInfo().supports(NATIVE_DOUBLE);
        CV_Assert(src.depth() != CV_64F || double_ok);

        int depth = src.depth();
        int num_channels = src.channels();
        Size size = src.size();

        if (num_channels == 1)
        {
            src.copyTo(dst[0]);
            return;
        }

        for (int i = 0; i < num_channels; ++i)
            dst[i].create(src.size(), depth);

        CV_Assert(num_channels <= 4);

        DevMem2D dst_as_devmem[4];
        for (int i = 0; i < num_channels; ++i)
            dst_as_devmem[i] = dst[i];

        DevMem2D src_as_devmem(src);
        split_merge::split_caller(src_as_devmem, dst_as_devmem,
                                  num_channels, src.elemSize1(), 
                                  stream);
    }
开发者ID:JaehyunAhn,项目名称:Basic_OpenCV_utilization,代码行数:32,代码来源:split_merge.cpp

示例4: DeviceInfo

void cv::gpu::Stream::enqueueConvert(const GpuMat& src, GpuMat& dst, int rtype, double alpha, double beta)
{
    CV_Assert((src.depth() != CV_64F && CV_MAT_DEPTH(rtype) != CV_64F) || 
        (TargetArchs::builtWith(NATIVE_DOUBLE) && DeviceInfo().supports(NATIVE_DOUBLE)));

    bool noScale = fabs(alpha-1) < std::numeric_limits<double>::epsilon() && fabs(beta) < std::numeric_limits<double>::epsilon();

    if( rtype < 0 )
        rtype = src.type();
    else
        rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), src.channels());

    int sdepth = src.depth(), ddepth = CV_MAT_DEPTH(rtype);
    if( sdepth == ddepth && noScale )
    {
        src.copyTo(dst);
        return;
    }

    GpuMat temp;
    const GpuMat* psrc = &src;
    if( sdepth != ddepth && psrc == &dst )
        psrc = &(temp = src);

    dst.create( src.size(), rtype );
    convertTo(src, dst, alpha, beta, Impl::getStream(impl));
}
开发者ID:09beezahmad,项目名称:opencv,代码行数:27,代码来源:cudastream.cpp

示例5: void

void cv::gpu::ImagePyramid::getLayer(GpuMat& outImg, Size outRoi, Stream& stream) const
{
    using namespace cv::gpu::device::pyramid;

    typedef void (*func_t)(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream);

    static const func_t funcs[6][4] =
    {
        {kernelInterpolateFrom1_gpu<uchar1>      , 0 /*kernelInterpolateFrom1_gpu<uchar2>*/ , kernelInterpolateFrom1_gpu<uchar3>      , kernelInterpolateFrom1_gpu<uchar4>      },
        {0 /*kernelInterpolateFrom1_gpu<char1>*/ , 0 /*kernelInterpolateFrom1_gpu<char2>*/  , 0 /*kernelInterpolateFrom1_gpu<char3>*/ , 0 /*kernelInterpolateFrom1_gpu<char4>*/ },
        {kernelInterpolateFrom1_gpu<ushort1>     , 0 /*kernelInterpolateFrom1_gpu<ushort2>*/, kernelInterpolateFrom1_gpu<ushort3>     , kernelInterpolateFrom1_gpu<ushort4>     },
        {0 /*kernelInterpolateFrom1_gpu<short1>*/, 0 /*kernelInterpolateFrom1_gpu<short2>*/ , 0 /*kernelInterpolateFrom1_gpu<short3>*/, 0 /*kernelInterpolateFrom1_gpu<short4>*/},
        {0 /*kernelInterpolateFrom1_gpu<int1>*/  , 0 /*kernelInterpolateFrom1_gpu<int2>*/   , 0 /*kernelInterpolateFrom1_gpu<int3>*/  , 0 /*kernelInterpolateFrom1_gpu<int4>*/  },
        {kernelInterpolateFrom1_gpu<float1>      , 0 /*kernelInterpolateFrom1_gpu<float2>*/ , kernelInterpolateFrom1_gpu<float3>      , kernelInterpolateFrom1_gpu<float4>      }
    };

    CV_Assert(outRoi.width <= layer0_.cols && outRoi.height <= layer0_.rows && outRoi.width > 0 && outRoi.height > 0);

    ensureSizeIsEnough(outRoi, layer0_.type(), outImg);

    const func_t func = funcs[outImg.depth()][outImg.channels() - 1];
    CV_Assert(func != 0);

    if (outRoi.width == layer0_.cols && outRoi.height == layer0_.rows)
    {
        if (stream)
            stream.enqueueCopy(layer0_, outImg);
        else
            layer0_.copyTo(outImg);
    }

    float lastScale = 1.0f;
    float curScale;
    GpuMat lastLayer = layer0_;
    GpuMat curLayer;

    for (int i = 0; i < nLayers_ - 1; ++i)
    {
        curScale = lastScale * 0.5f;
        curLayer = pyramid_[i];

        if (outRoi.width == curLayer.cols && outRoi.height == curLayer.rows)
        {
            if (stream)
                stream.enqueueCopy(curLayer, outImg);
            else
                curLayer.copyTo(outImg);
        }

        if (outRoi.width >= curLayer.cols && outRoi.height >= curLayer.rows)
            break;

        lastScale = curScale;
        lastLayer = curLayer;
    }

    func(lastLayer, outImg, StreamAccessor::getStream(stream));
}
开发者ID:KeisukeNoda,项目名称:opencv,代码行数:58,代码来源:pyramids.cpp

示例6:

void cv::gpu::GaussianBlur(const GpuMat& src, GpuMat& dst, Size ksize, double sigma1, double sigma2)
{
    if (ksize.width == 1 && ksize.height == 1)
    {
        src.copyTo(dst);
        return;
    }

    dst.create(src.size(), src.type());
    
    Ptr<FilterEngine_GPU> f = createGaussianFilter_GPU(src.type(), ksize, sigma1, sigma2);
    f->apply(src, dst);
}
开发者ID:SCS-B3C,项目名称:OpenCV2-2,代码行数:13,代码来源:filtering.cpp

示例7: Rect

void cv::gpu::GaussianBlur(const GpuMat& src, GpuMat& dst, Size ksize, double sigma1, double sigma2, int rowBorderType, int columnBorderType, Stream& stream)
{
    if (ksize.width == 1 && ksize.height == 1)
    {
        src.copyTo(dst);
        return;
    }

    dst.create(src.size(), src.type());
    
    Ptr<FilterEngine_GPU> f = createGaussianFilter_GPU(src.type(), ksize, sigma1, sigma2, rowBorderType, columnBorderType);
    f->apply(src, dst, Rect(0, 0, src.cols, src.rows), stream);
}
开发者ID:dgiunchi,项目名称:OpenCV,代码行数:13,代码来源:filtering.cpp

示例8: void

void cv::cuda::resize(InputArray _src, OutputArray _dst, Size dsize, double fx, double fy, int interpolation, Stream& stream)
{
    GpuMat src = _src.getGpuMat();

    typedef void (*func_t)(const PtrStepSzb& src, const PtrStepSzb& srcWhole, int yoff, int xoff, const PtrStepSzb& dst, float fy, float fx, int interpolation, cudaStream_t stream);
    static const func_t funcs[6][4] =
    {
        {device::resize<uchar>      , 0 /*device::resize<uchar2>*/ , device::resize<uchar3>     , device::resize<uchar4>     },
        {0 /*device::resize<schar>*/, 0 /*device::resize<char2>*/  , 0 /*device::resize<char3>*/, 0 /*device::resize<char4>*/},
        {device::resize<ushort>     , 0 /*device::resize<ushort2>*/, device::resize<ushort3>    , device::resize<ushort4>    },
        {device::resize<short>      , 0 /*device::resize<short2>*/ , device::resize<short3>     , device::resize<short4>     },
        {0 /*device::resize<int>*/  , 0 /*device::resize<int2>*/   , 0 /*device::resize<int3>*/ , 0 /*device::resize<int4>*/ },
        {device::resize<float>      , 0 /*device::resize<float2>*/ , device::resize<float3>     , device::resize<float4>     }
    };

    CV_Assert( src.depth() <= CV_32F && src.channels() <= 4 );
    CV_Assert( interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC || interpolation == INTER_AREA );
    CV_Assert( !(dsize == Size()) || (fx > 0 && fy > 0) );

    if (dsize == Size())
    {
        dsize = Size(saturate_cast<int>(src.cols * fx), saturate_cast<int>(src.rows * fy));
    }
    else
    {
        fx = static_cast<double>(dsize.width) / src.cols;
        fy = static_cast<double>(dsize.height) / src.rows;
    }

    _dst.create(dsize, src.type());
    GpuMat dst = _dst.getGpuMat();

    if (dsize == src.size())
    {
        src.copyTo(dst, stream);
        return;
    }

    const func_t func = funcs[src.depth()][src.channels() - 1];

    if (!func)
        CV_Error(Error::StsUnsupportedFormat, "Unsupported combination of source and destination types");

    Size wholeSize;
    Point ofs;
    src.locateROI(wholeSize, ofs);
    PtrStepSzb wholeSrc(wholeSize.height, wholeSize.width, src.datastart, src.step);

    func(src, wholeSrc, ofs.y, ofs.x, dst, static_cast<float>(1.0 / fy), static_cast<float>(1.0 / fx), interpolation, StreamAccessor::getStream(stream));
}
开发者ID:cyberCBM,项目名称:DetectO,代码行数:50,代码来源:resize.cpp

示例9: fabs

void cv::gpu::Stream::enqueueConvert(const GpuMat& src, GpuMat& dst, int rtype, double alpha, double beta)
{
    bool noScale = fabs(alpha-1) < std::numeric_limits<double>::epsilon() && fabs(beta) < std::numeric_limits<double>::epsilon();

    if( rtype < 0 )
        rtype = src.type();
    else
        rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), src.channels());

    int sdepth = src.depth(), ddepth = CV_MAT_DEPTH(rtype);
    if( sdepth == ddepth && noScale )
    {
        src.copyTo(dst);
        return;
    }

    GpuMat temp;
    const GpuMat* psrc = &src;
    if( sdepth != ddepth && psrc == &dst )
        psrc = &(temp = src);

    dst.create( src.size(), rtype );
    matrix_operations::convert_to(*psrc, sdepth, dst, ddepth, psrc->channels(), alpha, beta, impl->stream);
}
开发者ID:samvit,项目名称:noseTracking,代码行数:24,代码来源:cudastream.cpp

示例10: dstSize

void cv::gpu::gemm(const GpuMat& src1, const GpuMat& src2, double alpha, const GpuMat& src3, double beta, GpuMat& dst, int flags, Stream& stream)
{
#ifndef HAVE_CUBLAS
    (void)src1;
    (void)src2;
    (void)alpha;
    (void)src3;
    (void)beta;
    (void)dst;
    (void)flags;
    (void)stream;
    CV_Error(CV_StsNotImplemented, "The library was build without CUBLAS");
#else
    // CUBLAS works with column-major matrices

    CV_Assert(src1.type() == CV_32FC1 || src1.type() == CV_32FC2 || src1.type() == CV_64FC1 || src1.type() == CV_64FC2);
    CV_Assert(src2.type() == src1.type() && (src3.empty() || src3.type() == src1.type()));

    if (src1.depth() == CV_64F)
    {
        if (!deviceSupports(NATIVE_DOUBLE))
            CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
    }

    bool tr1 = (flags & GEMM_1_T) != 0;
    bool tr2 = (flags & GEMM_2_T) != 0;
    bool tr3 = (flags & GEMM_3_T) != 0;

    if (src1.type() == CV_64FC2)
    {
        if (tr1 || tr2 || tr3)
            CV_Error(CV_StsNotImplemented, "transpose operation doesn't implemented for CV_64FC2 type");
    }

    Size src1Size = tr1 ? Size(src1.rows, src1.cols) : src1.size();
    Size src2Size = tr2 ? Size(src2.rows, src2.cols) : src2.size();
    Size src3Size = tr3 ? Size(src3.rows, src3.cols) : src3.size();
    Size dstSize(src2Size.width, src1Size.height);

    CV_Assert(src1Size.width == src2Size.height);
    CV_Assert(src3.empty() || src3Size == dstSize);

    dst.create(dstSize, src1.type());

    if (beta != 0)
    {
        if (src3.empty())
        {
            if (stream)
                stream.enqueueMemSet(dst, Scalar::all(0));
            else
                dst.setTo(Scalar::all(0));
        }
        else
        {
            if (tr3)
            {
                transpose(src3, dst, stream);
            }
            else
            {
                if (stream)
                    stream.enqueueCopy(src3, dst);
                else
                    src3.copyTo(dst);
            }
        }
    }

    cublasHandle_t handle;
    cublasSafeCall( cublasCreate_v2(&handle) );

    cublasSafeCall( cublasSetStream_v2(handle, StreamAccessor::getStream(stream)) );

    cublasSafeCall( cublasSetPointerMode_v2(handle, CUBLAS_POINTER_MODE_HOST) );

    const float alphaf = static_cast<float>(alpha);
    const float betaf = static_cast<float>(beta);

    const cuComplex alphacf = make_cuComplex(alphaf, 0);
    const cuComplex betacf = make_cuComplex(betaf, 0);

    const cuDoubleComplex alphac = make_cuDoubleComplex(alpha, 0);
    const cuDoubleComplex betac = make_cuDoubleComplex(beta, 0);

    cublasOperation_t transa = tr2 ? CUBLAS_OP_T : CUBLAS_OP_N;
    cublasOperation_t transb = tr1 ? CUBLAS_OP_T : CUBLAS_OP_N;

    switch (src1.type())
    {
    case CV_32FC1:
        cublasSafeCall( cublasSgemm_v2(handle, transa, transb, tr2 ? src2.rows : src2.cols, tr1 ? src1.cols : src1.rows, tr2 ? src2.cols : src2.rows,
            &alphaf,
            src2.ptr<float>(), static_cast<int>(src2.step / sizeof(float)),
            src1.ptr<float>(), static_cast<int>(src1.step / sizeof(float)),
            &betaf,
            dst.ptr<float>(), static_cast<int>(dst.step / sizeof(float))) );
        break;

    case CV_64FC1:
//.........这里部分代码省略.........
开发者ID:LiliMeng,项目名称:opencv-2,代码行数:101,代码来源:arithm.cpp

示例11: createContinuous

void cv::cuda::dft(InputArray _src, OutputArray _dst, Size dft_size, int flags, Stream& stream)
{
#ifndef HAVE_CUFFT
    (void) _src;
    (void) _dst;
    (void) dft_size;
    (void) flags;
    (void) stream;
    throw_no_cuda();
#else
    GpuMat src = _src.getGpuMat();

    CV_Assert( src.type() == CV_32FC1 || src.type() == CV_32FC2 );

    // We don't support unpacked output (in the case of real input)
    CV_Assert( !(flags & DFT_COMPLEX_OUTPUT) );

    const bool is_1d_input       = (dft_size.height == 1) || (dft_size.width == 1);
    const bool is_row_dft        = (flags & DFT_ROWS) != 0;
    const bool is_scaled_dft     = (flags & DFT_SCALE) != 0;
    const bool is_inverse        = (flags & DFT_INVERSE) != 0;
    const bool is_complex_input  = src.channels() == 2;
    const bool is_complex_output = !(flags & DFT_REAL_OUTPUT);

    // We don't support real-to-real transform
    CV_Assert( is_complex_input || is_complex_output );

    GpuMat src_cont = src;

    // Make sure here we work with the continuous input,
    // as CUFFT can't handle gaps
    createContinuous(src.rows, src.cols, src.type(), src_cont);
    if (src_cont.data != src.data)
        src.copyTo(src_cont, stream);

    Size dft_size_opt = dft_size;
    if (is_1d_input && !is_row_dft)
    {
        // If the source matrix is single column handle it as single row
        dft_size_opt.width = std::max(dft_size.width, dft_size.height);
        dft_size_opt.height = std::min(dft_size.width, dft_size.height);
    }

    CV_Assert( dft_size_opt.width > 1 );

    cufftType dft_type = CUFFT_R2C;
    if (is_complex_input)
        dft_type = is_complex_output ? CUFFT_C2C : CUFFT_C2R;

    cufftHandle plan;
    if (is_1d_input || is_row_dft)
        cufftSafeCall( cufftPlan1d(&plan, dft_size_opt.width, dft_type, dft_size_opt.height) );
    else
        cufftSafeCall( cufftPlan2d(&plan, dft_size_opt.height, dft_size_opt.width, dft_type) );

    cufftSafeCall( cufftSetStream(plan, StreamAccessor::getStream(stream)) );

    if (is_complex_input)
    {
        if (is_complex_output)
        {
            createContinuous(dft_size, CV_32FC2, _dst);
            GpuMat dst = _dst.getGpuMat();

            cufftSafeCall(cufftExecC2C(
                              plan, src_cont.ptr<cufftComplex>(), dst.ptr<cufftComplex>(),
                              is_inverse ? CUFFT_INVERSE : CUFFT_FORWARD));
        }
        else
        {
            createContinuous(dft_size, CV_32F, _dst);
            GpuMat dst = _dst.getGpuMat();

            cufftSafeCall(cufftExecC2R(
                              plan, src_cont.ptr<cufftComplex>(), dst.ptr<cufftReal>()));
        }
    }
    else
    {
        // We could swap dft_size for efficiency. Here we must reflect it
        if (dft_size == dft_size_opt)
            createContinuous(Size(dft_size.width / 2 + 1, dft_size.height), CV_32FC2, _dst);
        else
            createContinuous(Size(dft_size.width, dft_size.height / 2 + 1), CV_32FC2, _dst);

        GpuMat dst = _dst.getGpuMat();

        cufftSafeCall(cufftExecR2C(
                          plan, src_cont.ptr<cufftReal>(), dst.ptr<cufftComplex>()));
    }

    cufftSafeCall( cufftDestroy(plan) );

    if (is_scaled_dft)
        cuda::multiply(_dst, Scalar::all(1. / dft_size.area()), _dst, 1, -1, stream);

#endif
}
开发者ID:derfred,项目名称:opencv,代码行数:98,代码来源:arithm.cpp

示例12: NppStatus

void cv::gpu::resize(const GpuMat& src, GpuMat& dst, Size dsize, double fx, double fy, int interpolation, Stream& s)
{
    CV_Assert(src.depth() <= CV_32F && src.channels() <= 4);
    CV_Assert(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR
            || interpolation == INTER_CUBIC || interpolation == INTER_AREA);
    CV_Assert(!(dsize == Size()) || (fx > 0 && fy > 0));

    if (dsize == Size())
        dsize = Size(saturate_cast<int>(src.cols * fx), saturate_cast<int>(src.rows * fy));
    else
    {
        fx = static_cast<double>(dsize.width) / src.cols;
        fy = static_cast<double>(dsize.height) / src.rows;
    }
    if (dsize != dst.size())
        dst.create(dsize, src.type());

    if (dsize == src.size())
    {
        if (s)
            s.enqueueCopy(src, dst);
        else
            src.copyTo(dst);
        return;
    }

    cudaStream_t stream = StreamAccessor::getStream(s);

    Size wholeSize;
    Point ofs;
    src.locateROI(wholeSize, ofs);

    bool useNpp = (src.type() == CV_8UC1 || src.type() == CV_8UC4);
    useNpp = useNpp && (interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || (src.type() == CV_8UC4 && interpolation != INTER_AREA));

    if (useNpp)
    {
        typedef NppStatus (*func_t)(const Npp8u * pSrc, NppiSize oSrcSize, int nSrcStep, NppiRect oSrcROI, Npp8u * pDst, int nDstStep, NppiSize dstROISize,
                                    double xFactor, double yFactor, int eInterpolation);

        const func_t funcs[4] = { nppiResize_8u_C1R, 0, 0, nppiResize_8u_C4R };

        static const int npp_inter[] = {NPPI_INTER_NN, NPPI_INTER_LINEAR, NPPI_INTER_CUBIC, 0, NPPI_INTER_LANCZOS};

        NppiSize srcsz;
        srcsz.width  = wholeSize.width;
        srcsz.height = wholeSize.height;

        NppiRect srcrect;
        srcrect.x = ofs.x;
        srcrect.y = ofs.y;
        srcrect.width  = src.cols;
        srcrect.height = src.rows;

        NppiSize dstsz;
        dstsz.width  = dst.cols;
        dstsz.height = dst.rows;

        NppStreamHandler h(stream);

        nppSafeCall( funcs[src.channels() - 1](src.datastart, srcsz, static_cast<int>(src.step), srcrect,
                dst.ptr<Npp8u>(), static_cast<int>(dst.step), dstsz, fx, fy, npp_inter[interpolation]) );

        if (stream == 0)
            cudaSafeCall( cudaDeviceSynchronize() );
    }
    else
    {
        using namespace ::cv::gpu::device::imgproc;

        typedef void (*func_t)(DevMem2Db src, DevMem2Db srcWhole, int xoff, int yoff, float fx, float fy, DevMem2Db dst, int interpolation, cudaStream_t stream);

        static const func_t funcs[6][4] =
        {
            {resize_gpu<uchar>      , 0 /*resize_gpu<uchar2>*/ , resize_gpu<uchar3>     , resize_gpu<uchar4>     },
            {0 /*resize_gpu<schar>*/, 0 /*resize_gpu<char2>*/  , 0 /*resize_gpu<char3>*/, 0 /*resize_gpu<char4>*/},
            {resize_gpu<ushort>     , 0 /*resize_gpu<ushort2>*/, resize_gpu<ushort3>    , resize_gpu<ushort4>    },
            {resize_gpu<short>      , 0 /*resize_gpu<short2>*/ , resize_gpu<short3>     , resize_gpu<short4>     },
            {0 /*resize_gpu<int>*/  , 0 /*resize_gpu<int2>*/   , 0 /*resize_gpu<int3>*/ , 0 /*resize_gpu<int4>*/ },
            {resize_gpu<float>      , 0 /*resize_gpu<float2>*/ , resize_gpu<float3>     , resize_gpu<float4>     }
        };

        const func_t func = funcs[src.depth()][src.channels() - 1];
        CV_Assert(func != 0);

        func(src, DevMem2Db(wholeSize.height, wholeSize.width, src.datastart, src.step), ofs.x, ofs.y,
            static_cast<float>(1.0 / fx), static_cast<float>(1.0 / fy), dst, interpolation, stream);
    }
}
开发者ID:BRAINSia,项目名称:OpenCV_TruncatedSVN,代码行数:89,代码来源:resize.cpp

示例13: enqueueCopy

inline
void Stream::enqueueCopy(const GpuMat& src, OutputArray dst)
{
    src.copyTo(dst, *this);
}
开发者ID:Amorming,项目名称:opencv,代码行数:5,代码来源:gpu.inl.hpp


注:本文中的GpuMat::copyTo方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。