本文整理汇总了C++中GpuMat::setTo方法的典型用法代码示例。如果您正苦于以下问题:C++ GpuMat::setTo方法的具体用法?C++ GpuMat::setTo怎么用?C++ GpuMat::setTo使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类GpuMat
的用法示例。
在下文中一共展示了GpuMat::setTo方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: void
void cv::cuda::BFMatcher_CUDA::knnMatchSingle(const GpuMat& query, const GpuMat& train,
GpuMat& trainIdx, GpuMat& distance, GpuMat& allDist, int k,
const GpuMat& mask, Stream& stream)
{
if (query.empty() || train.empty())
return;
using namespace cv::cuda::device::bf_knnmatch;
typedef void (*caller_t)(const PtrStepSzb& query, const PtrStepSzb& train, int k, const PtrStepSzb& mask,
const PtrStepSzb& trainIdx, const PtrStepSzb& distance, const PtrStepSzf& allDist,
cudaStream_t stream);
static const caller_t callersL1[] =
{
matchL1_gpu<unsigned char>, 0/*matchL1_gpu<signed char>*/,
matchL1_gpu<unsigned short>, matchL1_gpu<short>,
matchL1_gpu<int>, matchL1_gpu<float>
};
static const caller_t callersL2[] =
{
0/*matchL2_gpu<unsigned char>*/, 0/*matchL2_gpu<signed char>*/,
0/*matchL2_gpu<unsigned short>*/, 0/*matchL2_gpu<short>*/,
0/*matchL2_gpu<int>*/, matchL2_gpu<float>
};
static const caller_t callersHamming[] =
{
matchHamming_gpu<unsigned char>, 0/*matchHamming_gpu<signed char>*/,
matchHamming_gpu<unsigned short>, 0/*matchHamming_gpu<short>*/,
matchHamming_gpu<int>, 0/*matchHamming_gpu<float>*/
};
CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
CV_Assert(train.type() == query.type() && train.cols == query.cols);
CV_Assert(norm == NORM_L1 || norm == NORM_L2 || norm == NORM_HAMMING);
const caller_t* callers = norm == NORM_L1 ? callersL1 : norm == NORM_L2 ? callersL2 : callersHamming;
const int nQuery = query.rows;
const int nTrain = train.rows;
if (k == 2)
{
ensureSizeIsEnough(1, nQuery, CV_32SC2, trainIdx);
ensureSizeIsEnough(1, nQuery, CV_32FC2, distance);
}
else
{
ensureSizeIsEnough(nQuery, k, CV_32S, trainIdx);
ensureSizeIsEnough(nQuery, k, CV_32F, distance);
ensureSizeIsEnough(nQuery, nTrain, CV_32FC1, allDist);
}
trainIdx.setTo(Scalar::all(-1), stream);
caller_t func = callers[query.depth()];
CV_Assert(func != 0);
func(query, train, k, mask, trainIdx, distance, allDist, StreamAccessor::getStream(stream));
}
示例2: void
void cv::cuda::rotate(InputArray _src, OutputArray _dst, Size dsize, double angle, double xShift, double yShift, int interpolation, Stream& stream)
{
typedef void (*func_t)(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift, double yShift, int interpolation, cudaStream_t stream);
static const func_t funcs[6][4] =
{
{NppRotate<CV_8U, nppiRotate_8u_C1R>::call, 0, NppRotate<CV_8U, nppiRotate_8u_C3R>::call, NppRotate<CV_8U, nppiRotate_8u_C4R>::call},
{0,0,0,0},
{NppRotate<CV_16U, nppiRotate_16u_C1R>::call, 0, NppRotate<CV_16U, nppiRotate_16u_C3R>::call, NppRotate<CV_16U, nppiRotate_16u_C4R>::call},
{0,0,0,0},
{0,0,0,0},
{NppRotate<CV_32F, nppiRotate_32f_C1R>::call, 0, NppRotate<CV_32F, nppiRotate_32f_C3R>::call, NppRotate<CV_32F, nppiRotate_32f_C4R>::call}
};
GpuMat src = _src.getGpuMat();
CV_Assert( src.depth() == CV_8U || src.depth() == CV_16U || src.depth() == CV_32F );
CV_Assert( src.channels() == 1 || src.channels() == 3 || src.channels() == 4 );
CV_Assert( interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC );
_dst.create(dsize, src.type());
GpuMat dst = _dst.getGpuMat();
dst.setTo(Scalar::all(0), stream);
funcs[src.depth()][src.channels() - 1](src, dst, dsize, angle, xShift, yShift, interpolation, StreamAccessor::getStream(stream));
}
示例3: void
void cv::gpu::BruteForceMatcher_GPU_base::knnMatchSingle(const GpuMat& query, const GpuMat& train,
GpuMat& trainIdx, GpuMat& distance, GpuMat& allDist, int k,
const GpuMat& mask, Stream& stream)
{
if (query.empty() || train.empty())
return;
using namespace cv::gpu::device::bf_knnmatch;
typedef void (*caller_t)(const PtrStepSzb& query, const PtrStepSzb& train, int k, const PtrStepSzb& mask,
const PtrStepSzb& trainIdx, const PtrStepSzb& distance, const PtrStepSzf& allDist,
cudaStream_t stream);
static const caller_t callers[3][6] =
{
{
matchL1_gpu<unsigned char>, 0/*matchL1_gpu<signed char>*/,
matchL1_gpu<unsigned short>, matchL1_gpu<short>,
matchL1_gpu<int>, matchL1_gpu<float>
},
{
0/*matchL2_gpu<unsigned char>*/, 0/*matchL2_gpu<signed char>*/,
0/*matchL2_gpu<unsigned short>*/, 0/*matchL2_gpu<short>*/,
0/*matchL2_gpu<int>*/, matchL2_gpu<float>
},
{
matchHamming_gpu<unsigned char>, 0/*matchHamming_gpu<signed char>*/,
matchHamming_gpu<unsigned short>, 0/*matchHamming_gpu<short>*/,
matchHamming_gpu<int>, 0/*matchHamming_gpu<float>*/
}
};
CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
CV_Assert(train.type() == query.type() && train.cols == query.cols);
const int nQuery = query.rows;
const int nTrain = train.rows;
if (k == 2)
{
ensureSizeIsEnough(1, nQuery, CV_32SC2, trainIdx);
ensureSizeIsEnough(1, nQuery, CV_32FC2, distance);
}
else
{
ensureSizeIsEnough(nQuery, k, CV_32S, trainIdx);
ensureSizeIsEnough(nQuery, k, CV_32F, distance);
ensureSizeIsEnough(nQuery, nTrain, CV_32FC1, allDist);
}
if (stream)
stream.enqueueMemSet(trainIdx, Scalar::all(-1));
else
trainIdx.setTo(Scalar::all(-1));
caller_t func = callers[distType][query.depth()];
CV_Assert(func != 0);
func(query, train, k, mask, trainIdx, distance, allDist, StreamAccessor::getStream(stream));
}
示例4: void
Scalar cv::gpu::sqrSum(const GpuMat& src, const GpuMat& mask, GpuMat& buf)
{
typedef void (*func_t)(PtrStepSzb src, void* buf, double* sum, PtrStepSzb mask);
static const func_t funcs[7][5] =
{
{0, ::sum::runSqr<uchar , 1>, ::sum::runSqr<uchar , 2>, ::sum::runSqr<uchar , 3>, ::sum::runSqr<uchar , 4>},
{0, ::sum::runSqr<schar , 1>, ::sum::runSqr<schar , 2>, ::sum::runSqr<schar , 3>, ::sum::runSqr<schar , 4>},
{0, ::sum::runSqr<ushort, 1>, ::sum::runSqr<ushort, 2>, ::sum::runSqr<ushort, 3>, ::sum::runSqr<ushort, 4>},
{0, ::sum::runSqr<short , 1>, ::sum::runSqr<short , 2>, ::sum::runSqr<short , 3>, ::sum::runSqr<short , 4>},
{0, ::sum::runSqr<int , 1>, ::sum::runSqr<int , 2>, ::sum::runSqr<int , 3>, ::sum::runSqr<int , 4>},
{0, ::sum::runSqr<float , 1>, ::sum::runSqr<float , 2>, ::sum::runSqr<float , 3>, ::sum::runSqr<float , 4>},
{0, ::sum::runSqr<double, 1>, ::sum::runSqr<double, 2>, ::sum::runSqr<double, 3>, ::sum::runSqr<double, 4>}
};
CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.size() == src.size()) );
if (src.depth() == CV_64F)
{
if (!deviceSupports(NATIVE_DOUBLE))
CV_Error(cv::Error::StsUnsupportedFormat, "The device doesn't support double");
}
Size buf_size;
::sum::getBufSize(src.cols, src.rows, src.channels(), buf_size.width, buf_size.height);
ensureSizeIsEnough(buf_size, CV_8U, buf);
buf.setTo(Scalar::all(0));
const func_t func = funcs[src.depth()][src.channels()];
double result[4];
func(src, buf.data, result, mask);
return Scalar(result[0], result[1], result[2], result[3]);
}
示例5: void
void cv::gpu::BFMatcher_GPU::radiusMatchSingle(const GpuMat& query, const GpuMat& train,
GpuMat& trainIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance,
const GpuMat& mask, Stream& stream)
{
if (query.empty() || train.empty())
return;
using namespace cv::gpu::device::bf_radius_match;
typedef void (*caller_t)(const PtrStepSzb& query, const PtrStepSzb& train, float maxDistance, const PtrStepSzb& mask,
const PtrStepSzi& trainIdx, const PtrStepSzf& distance, const PtrStepSz<unsigned int>& nMatches,
cudaStream_t stream);
static const caller_t callersL1[] =
{
matchL1_gpu<unsigned char>, 0/*matchL1_gpu<signed char>*/,
matchL1_gpu<unsigned short>, matchL1_gpu<short>,
matchL1_gpu<int>, matchL1_gpu<float>
};
static const caller_t callersL2[] =
{
0/*matchL2_gpu<unsigned char>*/, 0/*matchL2_gpu<signed char>*/,
0/*matchL2_gpu<unsigned short>*/, 0/*matchL2_gpu<short>*/,
0/*matchL2_gpu<int>*/, matchL2_gpu<float>
};
static const caller_t callersHamming[] =
{
matchHamming_gpu<unsigned char>, 0/*matchHamming_gpu<signed char>*/,
matchHamming_gpu<unsigned short>, 0/*matchHamming_gpu<short>*/,
matchHamming_gpu<int>, 0/*matchHamming_gpu<float>*/
};
const int nQuery = query.rows;
const int nTrain = train.rows;
CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
CV_Assert(train.type() == query.type() && train.cols == query.cols);
CV_Assert(trainIdx.empty() || (trainIdx.rows == nQuery && trainIdx.size() == distance.size()));
CV_Assert(norm == NORM_L1 || norm == NORM_L2 || norm == NORM_HAMMING);
const caller_t* callers = norm == NORM_L1 ? callersL1 : norm == NORM_L2 ? callersL2 : callersHamming;
ensureSizeIsEnough(1, nQuery, CV_32SC1, nMatches);
if (trainIdx.empty())
{
ensureSizeIsEnough(nQuery, std::max((nTrain / 100), 10), CV_32SC1, trainIdx);
ensureSizeIsEnough(nQuery, std::max((nTrain / 100), 10), CV_32FC1, distance);
}
if (stream)
stream.enqueueMemSet(nMatches, Scalar::all(0));
else
nMatches.setTo(Scalar::all(0));
caller_t func = callers[query.depth()];
CV_Assert(func != 0);
func(query, train, maxDistance, mask, trainIdx, distance, nMatches, StreamAccessor::getStream(stream));
}
示例6: h
void cv::gpu::interpolateFrames(const GpuMat& frame0, const GpuMat& frame1, const GpuMat& fu, const GpuMat& fv, const GpuMat& bu, const GpuMat& bv,
float pos, GpuMat& newFrame, GpuMat& buf, Stream& s)
{
CV_Assert(frame0.type() == CV_32FC1);
CV_Assert(frame1.size() == frame0.size() && frame1.type() == frame0.type());
CV_Assert(fu.size() == frame0.size() && fu.type() == frame0.type());
CV_Assert(fv.size() == frame0.size() && fv.type() == frame0.type());
CV_Assert(bu.size() == frame0.size() && bu.type() == frame0.type());
CV_Assert(bv.size() == frame0.size() && bv.type() == frame0.type());
newFrame.create(frame0.size(), frame0.type());
buf.create(6 * frame0.rows, frame0.cols, CV_32FC1);
buf.setTo(Scalar::all(0));
// occlusion masks
GpuMat occ0 = buf.rowRange(0 * frame0.rows, 1 * frame0.rows);
GpuMat occ1 = buf.rowRange(1 * frame0.rows, 2 * frame0.rows);
// interpolated forward flow
GpuMat fui = buf.rowRange(2 * frame0.rows, 3 * frame0.rows);
GpuMat fvi = buf.rowRange(3 * frame0.rows, 4 * frame0.rows);
// interpolated backward flow
GpuMat bui = buf.rowRange(4 * frame0.rows, 5 * frame0.rows);
GpuMat bvi = buf.rowRange(5 * frame0.rows, 6 * frame0.rows);
size_t step = frame0.step;
CV_Assert(frame1.step == step && fu.step == step && fv.step == step && bu.step == step && bv.step == step && newFrame.step == step && buf.step == step);
cudaStream_t stream = StreamAccessor::getStream(s);
NppStStreamHandler h(stream);
NppStInterpolationState state;
state.size = NcvSize32u(frame0.cols, frame0.rows);
state.nStep = static_cast<Ncv32u>(step);
state.pSrcFrame0 = const_cast<Ncv32f*>(frame0.ptr<Ncv32f>());
state.pSrcFrame1 = const_cast<Ncv32f*>(frame1.ptr<Ncv32f>());
state.pFU = const_cast<Ncv32f*>(fu.ptr<Ncv32f>());
state.pFV = const_cast<Ncv32f*>(fv.ptr<Ncv32f>());
state.pBU = const_cast<Ncv32f*>(bu.ptr<Ncv32f>());
state.pBV = const_cast<Ncv32f*>(bv.ptr<Ncv32f>());
state.pos = pos;
state.pNewFrame = newFrame.ptr<Ncv32f>();
state.ppBuffers[0] = occ0.ptr<Ncv32f>();
state.ppBuffers[1] = occ1.ptr<Ncv32f>();
state.ppBuffers[2] = fui.ptr<Ncv32f>();
state.ppBuffers[3] = fvi.ptr<Ncv32f>();
state.ppBuffers[4] = bui.ptr<Ncv32f>();
state.ppBuffers[5] = bvi.ptr<Ncv32f>();
ncvSafeCall( nppiStInterpolateFrames(&state) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
示例7:
void cv::gpu::calcHist(const GpuMat& src, GpuMat& hist, Stream& stream)
{
CV_Assert(src.type() == CV_8UC1);
hist.create(1, 256, CV_32SC1);
hist.setTo(Scalar::all(0));
hist::histogram256(src, hist.ptr<int>(), StreamAccessor::getStream(stream));
}
示例8: void
void cv::gpu::BFMatcher_GPU::knnMatch2Collection(const GpuMat& query, const GpuMat& trainCollection,
GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance,
const GpuMat& maskCollection, Stream& stream)
{
if (query.empty() || trainCollection.empty())
return;
using namespace cv::gpu::device::bf_knnmatch;
typedef void (*caller_t)(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks,
const PtrStepSzb& trainIdx, const PtrStepSzb& imgIdx, const PtrStepSzb& distance,
int cc, cudaStream_t stream);
static const caller_t callersL1[] =
{
match2L1_gpu<unsigned char>, 0/*match2L1_gpu<signed char>*/,
match2L1_gpu<unsigned short>, match2L1_gpu<short>,
match2L1_gpu<int>, match2L1_gpu<float>
};
static const caller_t callersL2[] =
{
0/*match2L2_gpu<unsigned char>*/, 0/*match2L2_gpu<signed char>*/,
0/*match2L2_gpu<unsigned short>*/, 0/*match2L2_gpu<short>*/,
0/*match2L2_gpu<int>*/, match2L2_gpu<float>
};
static const caller_t callersHamming[] =
{
match2Hamming_gpu<unsigned char>, 0/*match2Hamming_gpu<signed char>*/,
match2Hamming_gpu<unsigned short>, 0/*match2Hamming_gpu<short>*/,
match2Hamming_gpu<int>, 0/*match2Hamming_gpu<float>*/
};
CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
CV_Assert(norm == NORM_L1 || norm == NORM_L2 || norm == NORM_HAMMING);
const caller_t* callers = norm == NORM_L1 ? callersL1 : norm == NORM_L2 ? callersL2 : callersHamming;
const int nQuery = query.rows;
ensureSizeIsEnough(1, nQuery, CV_32SC2, trainIdx);
ensureSizeIsEnough(1, nQuery, CV_32SC2, imgIdx);
ensureSizeIsEnough(1, nQuery, CV_32FC2, distance);
if (stream)
stream.enqueueMemSet(trainIdx, Scalar::all(-1));
else
trainIdx.setTo(Scalar::all(-1));
caller_t func = callers[query.depth()];
CV_Assert(func != 0);
DeviceInfo info;
int cc = info.majorVersion() * 10 + info.minorVersion();
func(query, trainCollection, maskCollection, trainIdx, imgIdx, distance, cc, StreamAccessor::getStream(stream));
}
示例9:
void cv::gpu::calcHist(InputArray _src, OutputArray _hist, Stream& stream)
{
GpuMat src = _src.getGpuMat();
CV_Assert( src.type() == CV_8UC1 );
_hist.create(1, 256, CV_32SC1);
GpuMat hist = _hist.getGpuMat();
hist.setTo(Scalar::all(0), stream);
hist::histogram256(src, hist.ptr<int>(), StreamAccessor::getStream(stream));
}
示例10: void
Scalar cv::gpu::absSum(const GpuMat& src, const GpuMat& mask, GpuMat& buf)
{
typedef void (*func_t)(PtrStepSzb src, void* buf, double* sum, PtrStepSzb mask);
#ifdef OPENCV_TINY_GPU_MODULE
static const func_t funcs[7][5] =
{
{0, ::sum::runAbs<uchar , 1>, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, 0, 0, 0, 0},
{0, ::sum::runAbs<float , 1>, 0, 0, 0},
{0, 0, 0, 0, 0},
};
#else
static const func_t funcs[7][5] =
{
{0, ::sum::runAbs<uchar , 1>, ::sum::runAbs<uchar , 2>, ::sum::runAbs<uchar , 3>, ::sum::runAbs<uchar , 4>},
{0, ::sum::runAbs<schar , 1>, ::sum::runAbs<schar , 2>, ::sum::runAbs<schar , 3>, ::sum::runAbs<schar , 4>},
{0, ::sum::runAbs<ushort, 1>, ::sum::runAbs<ushort, 2>, ::sum::runAbs<ushort, 3>, ::sum::runAbs<ushort, 4>},
{0, ::sum::runAbs<short , 1>, ::sum::runAbs<short , 2>, ::sum::runAbs<short , 3>, ::sum::runAbs<short , 4>},
{0, ::sum::runAbs<int , 1>, ::sum::runAbs<int , 2>, ::sum::runAbs<int , 3>, ::sum::runAbs<int , 4>},
{0, ::sum::runAbs<float , 1>, ::sum::runAbs<float , 2>, ::sum::runAbs<float , 3>, ::sum::runAbs<float , 4>},
{0, ::sum::runAbs<double, 1>, ::sum::runAbs<double, 2>, ::sum::runAbs<double, 3>, ::sum::runAbs<double, 4>}
};
#endif
CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.size() == src.size()) );
if (src.depth() == CV_64F)
{
if (!deviceSupports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
Size buf_size;
::sum::getBufSize(src.cols, src.rows, src.channels(), buf_size.width, buf_size.height);
ensureSizeIsEnough(buf_size, CV_8U, buf);
buf.setTo(Scalar::all(0));
const func_t func = funcs[src.depth()][src.channels()];
if (!func)
CV_Error(CV_StsUnsupportedFormat, "Unsupported combination of source and destination types");
double result[4];
func(src, buf.data, result, mask);
return Scalar(result[0], result[1], result[2], result[3]);
}
示例11: initialize
void cv::gpu::MOG2_GPU::operator()(const GpuMat& frame, GpuMat& fgmask, float learningRate, Stream& stream)
{
using namespace cv::gpu::cudev::mog;
int ch = frame.channels();
int work_ch = ch;
if (nframes_ == 0 || learningRate >= 1.0f || frame.size() != frameSize_ || work_ch != mean_.channels())
initialize(frame.size(), frame.type());
fgmask.create(frameSize_, CV_8UC1);
fgmask.setTo(cv::Scalar::all(0));
++nframes_;
learningRate = learningRate >= 0.0f && nframes_ > 1 ? learningRate : 1.0f / std::min(2 * nframes_, history);
CV_Assert(learningRate >= 0.0f);
mog2_gpu(frame, frame.channels(), fgmask, bgmodelUsedModes_, weight_, variance_, mean_, learningRate, -learningRate * fCT, bShadowDetection, StreamAccessor::getStream(stream));
}
示例12: u_avg
void cv::gpu::createOpticalFlowNeedleMap(const GpuMat& u, const GpuMat& v, GpuMat& vertex, GpuMat& colors)
{
using namespace cv::gpu::cudev::optical_flow;
CV_Assert(u.type() == CV_32FC1);
CV_Assert(v.type() == u.type() && v.size() == u.size());
const int NEEDLE_MAP_SCALE = 16;
const int x_needles = u.cols / NEEDLE_MAP_SCALE;
const int y_needles = u.rows / NEEDLE_MAP_SCALE;
GpuMat u_avg(y_needles, x_needles, CV_32FC1);
GpuMat v_avg(y_needles, x_needles, CV_32FC1);
NeedleMapAverage_gpu(u, v, u_avg, v_avg);
const int NUM_VERTS_PER_ARROW = 6;
const int num_arrows = x_needles * y_needles * NUM_VERTS_PER_ARROW;
vertex.create(1, num_arrows, CV_32FC3);
colors.create(1, num_arrows, CV_32FC3);
colors.setTo(Scalar::all(1.0));
double uMax, vMax;
minMax(u_avg, 0, &uMax);
minMax(v_avg, 0, &vMax);
float max_flow = static_cast<float>(std::sqrt(uMax * uMax + vMax * vMax));
CreateOpticalFlowNeedleMap_gpu(u_avg, v_avg, vertex.ptr<float>(), colors.ptr<float>(), max_flow, 1.0f / u.cols, 1.0f / u.rows);
cvtColor(colors, colors, COLOR_HSV2RGB);
}
示例13: csbp_operator
static void csbp_operator(StereoConstantSpaceBP& rthis, GpuMat u[2], GpuMat d[2], GpuMat l[2], GpuMat r[2],
GpuMat disp_selected_pyr[2], GpuMat& data_cost, GpuMat& data_cost_selected,
GpuMat& temp, GpuMat& out, const GpuMat& left, const GpuMat& right, GpuMat& disp, Stream& stream)
{
CV_DbgAssert(0 < rthis.ndisp && 0 < rthis.iters && 0 < rthis.levels && 0 < rthis.nr_plane
&& left.rows == right.rows && left.cols == right.cols && left.type() == right.type());
CV_Assert(rthis.levels <= 8 && (left.type() == CV_8UC1 || left.type() == CV_8UC3 || left.type() == CV_8UC4));
const Scalar zero = Scalar::all(0);
cudaStream_t cudaStream = StreamAccessor::getStream(stream);
////////////////////////////////////////////////////////////////////////////////////////////
// Init
int rows = left.rows;
int cols = left.cols;
rthis.levels = min(rthis.levels, int(log((double)rthis.ndisp) / log(2.0)));
int levels = rthis.levels;
AutoBuffer<int> buf(levels * 4);
int* cols_pyr = buf;
int* rows_pyr = cols_pyr + levels;
int* nr_plane_pyr = rows_pyr + levels;
int* step_pyr = nr_plane_pyr + levels;
cols_pyr[0] = cols;
rows_pyr[0] = rows;
nr_plane_pyr[0] = rthis.nr_plane;
const int n = 64;
step_pyr[0] = static_cast<int>(alignSize(cols * sizeof(T), n) / sizeof(T));
for (int i = 1; i < levels; i++)
{
cols_pyr[i] = (cols_pyr[i-1] + 1) / 2;
rows_pyr[i] = (rows_pyr[i-1] + 1) / 2;
nr_plane_pyr[i] = nr_plane_pyr[i-1] * 2;
step_pyr[i] = static_cast<int>(alignSize(cols_pyr[i] * sizeof(T), n) / sizeof(T));
}
Size msg_size(step_pyr[0], rows * nr_plane_pyr[0]);
Size data_cost_size(step_pyr[0], rows * nr_plane_pyr[0] * 2);
u[0].create(msg_size, DataType<T>::type);
d[0].create(msg_size, DataType<T>::type);
l[0].create(msg_size, DataType<T>::type);
r[0].create(msg_size, DataType<T>::type);
u[1].create(msg_size, DataType<T>::type);
d[1].create(msg_size, DataType<T>::type);
l[1].create(msg_size, DataType<T>::type);
r[1].create(msg_size, DataType<T>::type);
disp_selected_pyr[0].create(msg_size, DataType<T>::type);
disp_selected_pyr[1].create(msg_size, DataType<T>::type);
data_cost.create(data_cost_size, DataType<T>::type);
data_cost_selected.create(msg_size, DataType<T>::type);
step_pyr[0] = static_cast<int>(data_cost.step / sizeof(T));
Size temp_size = data_cost_size;
if (data_cost_size.width * data_cost_size.height < step_pyr[levels - 1] * rows_pyr[levels - 1] * rthis.ndisp)
temp_size = Size(step_pyr[levels - 1], rows_pyr[levels - 1] * rthis.ndisp);
temp.create(temp_size, DataType<T>::type);
////////////////////////////////////////////////////////////////////////////
// Compute
load_constants(rthis.ndisp, rthis.max_data_term, rthis.data_weight, rthis.max_disc_term, rthis.disc_single_jump, rthis.min_disp_th, left, right, temp);
if (stream)
{
stream.enqueueMemSet(l[0], zero);
stream.enqueueMemSet(d[0], zero);
stream.enqueueMemSet(r[0], zero);
stream.enqueueMemSet(u[0], zero);
stream.enqueueMemSet(l[1], zero);
stream.enqueueMemSet(d[1], zero);
stream.enqueueMemSet(r[1], zero);
stream.enqueueMemSet(u[1], zero);
stream.enqueueMemSet(data_cost, zero);
stream.enqueueMemSet(data_cost_selected, zero);
}
else
{
l[0].setTo(zero);
d[0].setTo(zero);
r[0].setTo(zero);
u[0].setTo(zero);
l[1].setTo(zero);
//.........这里部分代码省略.........
示例14: csbp_operator
static void csbp_operator(StereoConstantSpaceBP& rthis, GpuMat& mbuf, GpuMat& temp, GpuMat& out, const GpuMat& left, const GpuMat& right, GpuMat& disp, Stream& stream)
{
CV_DbgAssert(0 < rthis.ndisp && 0 < rthis.iters && 0 < rthis.levels && 0 < rthis.nr_plane
&& left.rows == right.rows && left.cols == right.cols && left.type() == right.type());
CV_Assert(rthis.levels <= 8 && (left.type() == CV_8UC1 || left.type() == CV_8UC3 || left.type() == CV_8UC4));
const Scalar zero = Scalar::all(0);
cudaStream_t cudaStream = StreamAccessor::getStream(stream);
////////////////////////////////////////////////////////////////////////////////////////////
// Init
int rows = left.rows;
int cols = left.cols;
rthis.levels = min(rthis.levels, int(log((double)rthis.ndisp) / log(2.0)));
int levels = rthis.levels;
// compute sizes
AutoBuffer<int> buf(levels * 3);
int* cols_pyr = buf;
int* rows_pyr = cols_pyr + levels;
int* nr_plane_pyr = rows_pyr + levels;
cols_pyr[0] = cols;
rows_pyr[0] = rows;
nr_plane_pyr[0] = rthis.nr_plane;
for (int i = 1; i < levels; i++)
{
cols_pyr[i] = cols_pyr[i-1] / 2;
rows_pyr[i] = rows_pyr[i-1] / 2;
nr_plane_pyr[i] = nr_plane_pyr[i-1] * 2;
}
GpuMat u[2], d[2], l[2], r[2], disp_selected_pyr[2], data_cost, data_cost_selected;
//allocate buffers
int buffers_count = 10; // (up + down + left + right + disp_selected_pyr) * 2
buffers_count += 2; // data_cost has twice more rows than other buffers, what's why +2, not +1;
buffers_count += 1; // data_cost_selected
mbuf.create(rows * rthis.nr_plane * buffers_count, cols, DataType<T>::type);
data_cost = mbuf.rowRange(0, rows * rthis.nr_plane * 2);
data_cost_selected = mbuf.rowRange(data_cost.rows, data_cost.rows + rows * rthis.nr_plane);
for(int k = 0; k < 2; ++k) // in/out
{
GpuMat sub1 = mbuf.rowRange(data_cost.rows + data_cost_selected.rows, mbuf.rows);
GpuMat sub2 = sub1.rowRange((k+0)*sub1.rows/2, (k+1)*sub1.rows/2);
GpuMat *buf_ptrs[] = { &u[k], &d[k], &l[k], &r[k], &disp_selected_pyr[k] };
for(int _r = 0; _r < 5; ++_r)
{
*buf_ptrs[_r] = sub2.rowRange(_r * sub2.rows/5, (_r+1) * sub2.rows/5);
assert(buf_ptrs[_r]->cols == cols && buf_ptrs[_r]->rows == rows * rthis.nr_plane);
}
};
size_t elem_step = mbuf.step / sizeof(T);
Size temp_size = data_cost.size();
if ((size_t)temp_size.area() < elem_step * rows_pyr[levels - 1] * rthis.ndisp)
temp_size = Size(static_cast<int>(elem_step), rows_pyr[levels - 1] * rthis.ndisp);
temp.create(temp_size, DataType<T>::type);
////////////////////////////////////////////////////////////////////////////
// Compute
load_constants(rthis.ndisp, rthis.max_data_term, rthis.data_weight, rthis.max_disc_term, rthis.disc_single_jump, rthis.min_disp_th, left, right, temp);
if (stream)
{
stream.enqueueMemSet(l[0], zero);
stream.enqueueMemSet(d[0], zero);
stream.enqueueMemSet(r[0], zero);
stream.enqueueMemSet(u[0], zero);
stream.enqueueMemSet(l[1], zero);
stream.enqueueMemSet(d[1], zero);
stream.enqueueMemSet(r[1], zero);
stream.enqueueMemSet(u[1], zero);
stream.enqueueMemSet(data_cost, zero);
stream.enqueueMemSet(data_cost_selected, zero);
}
else
{
l[0].setTo(zero);
d[0].setTo(zero);
r[0].setTo(zero);
u[0].setTo(zero);
l[1].setTo(zero);
d[1].setTo(zero);
//.........这里部分代码省略.........
示例15: enqueueMemSet
inline
void Stream::enqueueMemSet(GpuMat& src, Scalar val)
{
src.setTo(val, *this);
}