本文整理汇总了C++中GlobalVariable::setLinkage方法的典型用法代码示例。如果您正苦于以下问题:C++ GlobalVariable::setLinkage方法的具体用法?C++ GlobalVariable::setLinkage怎么用?C++ GlobalVariable::setLinkage使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类GlobalVariable
的用法示例。
在下文中一共展示了GlobalVariable::setLinkage方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: jl_emit_and_add_to_shadow
// global variables to pointers are pretty common,
// so this method is available as a convenience for emitting them.
// for other types, the formula for implementation is straightforward:
// (see stringConstPtr, for an alternative example to the code below)
//
// if in imaging_mode, emit a GlobalVariable with the same name and an initializer to the shadow_module
// making it valid for emission and reloading in the sysimage
//
// then add a global mapping to the current value (usually from calloc'd space)
// to the execution engine to make it valid for the current session (with the current value)
void* jl_emit_and_add_to_shadow(GlobalVariable *gv, void *gvarinit)
{
PointerType *T = cast<PointerType>(gv->getType()->getElementType()); // pointer is the only supported type here
GlobalVariable *shadowvar = NULL;
#if defined(USE_MCJIT) || defined(USE_ORCJIT)
if (imaging_mode)
#endif
shadowvar = global_proto(gv, shadow_output);
if (shadowvar) {
shadowvar->setInitializer(ConstantPointerNull::get(T));
shadowvar->setLinkage(GlobalVariable::InternalLinkage);
addComdat(shadowvar);
if (imaging_mode && gvarinit) {
// make the pointer valid for future sessions
jl_sysimg_gvars.push_back(ConstantExpr::getBitCast(shadowvar, T_psize));
jl_value_llvm gv_struct;
gv_struct.gv = global_proto(gv);
gv_struct.index = jl_sysimg_gvars.size();
jl_value_to_llvm[gvarinit] = gv_struct;
}
}
// make the pointer valid for this session
#if defined(USE_MCJIT) || defined(USE_ORCJIT)
void *slot = calloc(1, sizeof(void*));
jl_ExecutionEngine->addGlobalMapping(gv, slot);
return slot;
#else
return jl_ExecutionEngine->getPointerToGlobal(shadowvar);
#endif
}
示例2: handleData
bool SancusModuleCreator::handleData(GlobalVariable& gv)
{
SancusModuleInfo info = getSancusModuleInfo(&gv);
if (!info.isInSm)
return false;
if (gv.hasCommonLinkage())
gv.setLinkage(GlobalValue::WeakAnyLinkage);
gv.setSection(info.getDataSection());
return true;
}
示例3: lowerCoverageData
void InstrProfiling::lowerCoverageData(GlobalVariable *CoverageNamesVar) {
ConstantArray *Names =
cast<ConstantArray>(CoverageNamesVar->getInitializer());
for (unsigned I = 0, E = Names->getNumOperands(); I < E; ++I) {
Constant *NC = Names->getOperand(I);
Value *V = NC->stripPointerCasts();
assert(isa<GlobalVariable>(V) && "Missing reference to function name");
GlobalVariable *Name = cast<GlobalVariable>(V);
Name->setLinkage(GlobalValue::PrivateLinkage);
ReferencedNames.push_back(Name);
}
}
示例4: emitInitialization
void InstrProfiling::emitInitialization() {
StringRef InstrProfileOutput = Options.InstrProfileOutput;
if (!InstrProfileOutput.empty()) {
// Create variable for profile name.
Constant *ProfileNameConst =
ConstantDataArray::getString(M->getContext(), InstrProfileOutput, true);
GlobalVariable *ProfileNameVar = new GlobalVariable(
*M, ProfileNameConst->getType(), true, GlobalValue::WeakAnyLinkage,
ProfileNameConst, INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR));
Triple TT(M->getTargetTriple());
if (TT.supportsCOMDAT()) {
ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage);
ProfileNameVar->setComdat(M->getOrInsertComdat(
StringRef(INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR))));
}
}
Constant *RegisterF = M->getFunction(getInstrProfRegFuncsName());
if (!RegisterF)
return;
// Create the initialization function.
auto *VoidTy = Type::getVoidTy(M->getContext());
auto *F = Function::Create(FunctionType::get(VoidTy, false),
GlobalValue::InternalLinkage,
getInstrProfInitFuncName(), M);
F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
F->addFnAttr(Attribute::NoInline);
if (Options.NoRedZone)
F->addFnAttr(Attribute::NoRedZone);
// Add the basic block and the necessary calls.
IRBuilder<> IRB(BasicBlock::Create(M->getContext(), "", F));
if (RegisterF)
IRB.CreateCall(RegisterF, {});
IRB.CreateRetVoid();
appendToGlobalCtors(*M, F, 0);
}
示例5: GlobalVariable
std::unique_ptr<Module> llvm::CloneModule(
const Module *M, ValueToValueMapTy &VMap,
std::function<bool(const GlobalValue *)> ShouldCloneDefinition) {
// First off, we need to create the new module.
std::unique_ptr<Module> New =
llvm::make_unique<Module>(M->getModuleIdentifier(), M->getContext());
New->setDataLayout(M->getDataLayout());
New->setTargetTriple(M->getTargetTriple());
New->setModuleInlineAsm(M->getModuleInlineAsm());
// Loop over all of the global variables, making corresponding globals in the
// new module. Here we add them to the VMap and to the new Module. We
// don't worry about attributes or initializers, they will come later.
//
for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
I != E; ++I) {
GlobalVariable *GV = new GlobalVariable(*New,
I->getValueType(),
I->isConstant(), I->getLinkage(),
(Constant*) nullptr, I->getName(),
(GlobalVariable*) nullptr,
I->getThreadLocalMode(),
I->getType()->getAddressSpace());
GV->copyAttributesFrom(&*I);
VMap[&*I] = GV;
}
// Loop over the functions in the module, making external functions as before
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
Function *NF =
Function::Create(cast<FunctionType>(I->getValueType()),
I->getLinkage(), I->getName(), New.get());
NF->copyAttributesFrom(&*I);
VMap[&*I] = NF;
}
// Loop over the aliases in the module
for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
I != E; ++I) {
if (!ShouldCloneDefinition(&*I)) {
// An alias cannot act as an external reference, so we need to create
// either a function or a global variable depending on the value type.
// FIXME: Once pointee types are gone we can probably pick one or the
// other.
GlobalValue *GV;
if (I->getValueType()->isFunctionTy())
GV = Function::Create(cast<FunctionType>(I->getValueType()),
GlobalValue::ExternalLinkage, I->getName(),
New.get());
else
GV = new GlobalVariable(
*New, I->getValueType(), false, GlobalValue::ExternalLinkage,
(Constant *)nullptr, I->getName(), (GlobalVariable *)nullptr,
I->getThreadLocalMode(), I->getType()->getAddressSpace());
VMap[&*I] = GV;
// We do not copy attributes (mainly because copying between different
// kinds of globals is forbidden), but this is generally not required for
// correctness.
continue;
}
auto *GA = GlobalAlias::create(I->getValueType(),
I->getType()->getPointerAddressSpace(),
I->getLinkage(), I->getName(), New.get());
GA->copyAttributesFrom(&*I);
VMap[&*I] = GA;
}
// Now that all of the things that global variable initializer can refer to
// have been created, loop through and copy the global variable referrers
// over... We also set the attributes on the global now.
//
for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
I != E; ++I) {
GlobalVariable *GV = cast<GlobalVariable>(VMap[&*I]);
if (!ShouldCloneDefinition(&*I)) {
// Skip after setting the correct linkage for an external reference.
GV->setLinkage(GlobalValue::ExternalLinkage);
continue;
}
if (I->hasInitializer())
GV->setInitializer(MapValue(I->getInitializer(), VMap));
}
// Similarly, copy over function bodies now...
//
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
Function *F = cast<Function>(VMap[&*I]);
if (!ShouldCloneDefinition(&*I)) {
// Skip after setting the correct linkage for an external reference.
F->setLinkage(GlobalValue::ExternalLinkage);
// Personality function is not valid on a declaration.
F->setPersonalityFn(nullptr);
continue;
}
if (!I->isDeclaration()) {
Function::arg_iterator DestI = F->arg_begin();
for (Function::const_arg_iterator J = I->arg_begin(); J != I->arg_end();
++J) {
DestI->setName(J->getName());
VMap[&*J] = &*DestI++;
//.........这里部分代码省略.........
示例6: GlobalVariable
GlobalVariable *
InstrProfiling::getOrCreateRegionCounters(InstrProfIncrementInst *Inc) {
GlobalVariable *NamePtr = Inc->getName();
auto It = ProfileDataMap.find(NamePtr);
PerFunctionProfileData PD;
if (It != ProfileDataMap.end()) {
if (It->second.RegionCounters)
return It->second.RegionCounters;
PD = It->second;
}
// Move the name variable to the right section. Place them in a COMDAT group
// if the associated function is a COMDAT. This will make sure that
// only one copy of counters of the COMDAT function will be emitted after
// linking.
Function *Fn = Inc->getParent()->getParent();
Comdat *ProfileVarsComdat = nullptr;
ProfileVarsComdat = getOrCreateProfileComdat(*M, *Fn, Inc);
uint64_t NumCounters = Inc->getNumCounters()->getZExtValue();
LLVMContext &Ctx = M->getContext();
ArrayType *CounterTy = ArrayType::get(Type::getInt64Ty(Ctx), NumCounters);
// Create the counters variable.
auto *CounterPtr =
new GlobalVariable(*M, CounterTy, false, NamePtr->getLinkage(),
Constant::getNullValue(CounterTy),
getVarName(Inc, getInstrProfCountersVarPrefix()));
CounterPtr->setVisibility(NamePtr->getVisibility());
CounterPtr->setSection(
getInstrProfSectionName(IPSK_cnts, TT.getObjectFormat()));
CounterPtr->setAlignment(8);
CounterPtr->setComdat(ProfileVarsComdat);
auto *Int8PtrTy = Type::getInt8PtrTy(Ctx);
// Allocate statically the array of pointers to value profile nodes for
// the current function.
Constant *ValuesPtrExpr = ConstantPointerNull::get(Int8PtrTy);
if (ValueProfileStaticAlloc && !needsRuntimeRegistrationOfSectionRange(*M)) {
uint64_t NS = 0;
for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
NS += PD.NumValueSites[Kind];
if (NS) {
ArrayType *ValuesTy = ArrayType::get(Type::getInt64Ty(Ctx), NS);
auto *ValuesVar =
new GlobalVariable(*M, ValuesTy, false, NamePtr->getLinkage(),
Constant::getNullValue(ValuesTy),
getVarName(Inc, getInstrProfValuesVarPrefix()));
ValuesVar->setVisibility(NamePtr->getVisibility());
ValuesVar->setSection(
getInstrProfSectionName(IPSK_vals, TT.getObjectFormat()));
ValuesVar->setAlignment(8);
ValuesVar->setComdat(ProfileVarsComdat);
ValuesPtrExpr =
ConstantExpr::getBitCast(ValuesVar, Type::getInt8PtrTy(Ctx));
}
}
// Create data variable.
auto *Int16Ty = Type::getInt16Ty(Ctx);
auto *Int16ArrayTy = ArrayType::get(Int16Ty, IPVK_Last + 1);
Type *DataTypes[] = {
#define INSTR_PROF_DATA(Type, LLVMType, Name, Init) LLVMType,
#include "llvm/ProfileData/InstrProfData.inc"
};
auto *DataTy = StructType::get(Ctx, makeArrayRef(DataTypes));
Constant *FunctionAddr = shouldRecordFunctionAddr(Fn)
? ConstantExpr::getBitCast(Fn, Int8PtrTy)
: ConstantPointerNull::get(Int8PtrTy);
Constant *Int16ArrayVals[IPVK_Last + 1];
for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
Int16ArrayVals[Kind] = ConstantInt::get(Int16Ty, PD.NumValueSites[Kind]);
Constant *DataVals[] = {
#define INSTR_PROF_DATA(Type, LLVMType, Name, Init) Init,
#include "llvm/ProfileData/InstrProfData.inc"
};
auto *Data = new GlobalVariable(*M, DataTy, false, NamePtr->getLinkage(),
ConstantStruct::get(DataTy, DataVals),
getVarName(Inc, getInstrProfDataVarPrefix()));
Data->setVisibility(NamePtr->getVisibility());
Data->setSection(getInstrProfSectionName(IPSK_data, TT.getObjectFormat()));
Data->setAlignment(INSTR_PROF_DATA_ALIGNMENT);
Data->setComdat(ProfileVarsComdat);
PD.RegionCounters = CounterPtr;
PD.DataVar = Data;
ProfileDataMap[NamePtr] = PD;
// Mark the data variable as used so that it isn't stripped out.
UsedVars.push_back(Data);
// Now that the linkage set by the FE has been passed to the data and counter
// variables, reset Name variable's linkage and visibility to private so that
// it can be removed later by the compiler.
NamePtr->setLinkage(GlobalValue::PrivateLinkage);
// Collect the referenced names to be used by emitNameData.
ReferencedNames.push_back(NamePtr);
//.........这里部分代码省略.........
示例7: Module
Module *llvm::CloneModule(const Module *M,
DenseMap<const Value*, Value*> &ValueMap) {
// First off, we need to create the new module...
Module *New = new Module(M->getModuleIdentifier());
New->setDataLayout(M->getDataLayout());
New->setTargetTriple(M->getTargetTriple());
New->setModuleInlineAsm(M->getModuleInlineAsm());
// Copy all of the type symbol table entries over.
const TypeSymbolTable &TST = M->getTypeSymbolTable();
for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
TI != TE; ++TI)
New->addTypeName(TI->first, TI->second);
// Copy all of the dependent libraries over.
for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
New->addLibrary(*I);
// Loop over all of the global variables, making corresponding globals in the
// new module. Here we add them to the ValueMap and to the new Module. We
// don't worry about attributes or initializers, they will come later.
//
for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
I != E; ++I) {
GlobalVariable *GV = new GlobalVariable(I->getType()->getElementType(),
false,
GlobalValue::ExternalLinkage, 0,
I->getName(), New);
GV->setAlignment(I->getAlignment());
ValueMap[I] = GV;
}
// Loop over the functions in the module, making external functions as before
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
Function *NF =
Function::Create(cast<FunctionType>(I->getType()->getElementType()),
GlobalValue::ExternalLinkage, I->getName(), New);
NF->copyAttributesFrom(I);
ValueMap[I] = NF;
}
// Loop over the aliases in the module
for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
I != E; ++I)
ValueMap[I] = new GlobalAlias(I->getType(), GlobalAlias::ExternalLinkage,
I->getName(), NULL, New);
// Now that all of the things that global variable initializer can refer to
// have been created, loop through and copy the global variable referrers
// over... We also set the attributes on the global now.
//
for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
I != E; ++I) {
GlobalVariable *GV = cast<GlobalVariable>(ValueMap[I]);
if (I->hasInitializer())
GV->setInitializer(cast<Constant>(MapValue(I->getInitializer(),
ValueMap)));
GV->setLinkage(I->getLinkage());
GV->setThreadLocal(I->isThreadLocal());
GV->setConstant(I->isConstant());
}
// Similarly, copy over function bodies now...
//
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
Function *F = cast<Function>(ValueMap[I]);
if (!I->isDeclaration()) {
Function::arg_iterator DestI = F->arg_begin();
for (Function::const_arg_iterator J = I->arg_begin(); J != I->arg_end();
++J) {
DestI->setName(J->getName());
ValueMap[J] = DestI++;
}
std::vector<ReturnInst*> Returns; // Ignore returns cloned...
CloneFunctionInto(F, I, ValueMap, Returns);
}
F->setLinkage(I->getLinkage());
}
// And aliases
for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
I != E; ++I) {
GlobalAlias *GA = cast<GlobalAlias>(ValueMap[I]);
GA->setLinkage(I->getLinkage());
if (const Constant* C = I->getAliasee())
GA->setAliasee(cast<Constant>(MapValue(C, ValueMap)));
}
return New;
}
示例8: Module
Module *llvm::CloneModule(const Module *M,
ValueToValueMapTy &VMap) {
// First off, we need to create the new module...
Module *New = new Module(M->getModuleIdentifier(), M->getContext());
New->setDataLayout(M->getDataLayout());
New->setTargetTriple(M->getTargetTriple());
New->setModuleInlineAsm(M->getModuleInlineAsm());
// Copy all of the type symbol table entries over.
const TypeSymbolTable &TST = M->getTypeSymbolTable();
for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
TI != TE; ++TI)
New->addTypeName(TI->first, TI->second);
// Copy all of the dependent libraries over.
for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
New->addLibrary(*I);
// Loop over all of the global variables, making corresponding globals in the
// new module. Here we add them to the VMap and to the new Module. We
// don't worry about attributes or initializers, they will come later.
//
for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
I != E; ++I) {
GlobalVariable *GV = new GlobalVariable(*New,
I->getType()->getElementType(),
false,
GlobalValue::ExternalLinkage, 0,
I->getName());
GV->setAlignment(I->getAlignment());
VMap[I] = GV;
}
// Loop over the functions in the module, making external functions as before
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
Function *NF =
Function::Create(cast<FunctionType>(I->getType()->getElementType()),
GlobalValue::ExternalLinkage, I->getName(), New);
NF->copyAttributesFrom(I);
VMap[I] = NF;
}
// Loop over the aliases in the module
for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
I != E; ++I)
VMap[I] = new GlobalAlias(I->getType(), GlobalAlias::ExternalLinkage,
I->getName(), NULL, New);
// Now that all of the things that global variable initializer can refer to
// have been created, loop through and copy the global variable referrers
// over... We also set the attributes on the global now.
//
for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
I != E; ++I) {
GlobalVariable *GV = cast<GlobalVariable>(VMap[I]);
if (I->hasInitializer())
GV->setInitializer(cast<Constant>(MapValue(I->getInitializer(),
VMap)));
GV->setLinkage(I->getLinkage());
GV->setThreadLocal(I->isThreadLocal());
GV->setConstant(I->isConstant());
}
// Similarly, copy over function bodies now...
//
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
Function *F = cast<Function>(VMap[I]);
if (!I->isDeclaration()) {
Function::arg_iterator DestI = F->arg_begin();
for (Function::const_arg_iterator J = I->arg_begin(); J != I->arg_end();
++J) {
DestI->setName(J->getName());
VMap[J] = DestI++;
}
SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned.
CloneFunctionInto(F, I, VMap, Returns);
}
F->setLinkage(I->getLinkage());
}
// And aliases
for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
I != E; ++I) {
GlobalAlias *GA = cast<GlobalAlias>(VMap[I]);
GA->setLinkage(I->getLinkage());
if (const Constant* C = I->getAliasee())
GA->setAliasee(cast<Constant>(MapValue(C, VMap)));
}
// And named metadata....
for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
E = M->named_metadata_end(); I != E; ++I) {
const NamedMDNode &NMD = *I;
SmallVector<MDNode*, 4> MDs;
for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
MDs.push_back(cast<MDNode>(MapValue(NMD.getOperand(i), VMap)));
NamedMDNode::Create(New->getContext(), NMD.getName(),
MDs.data(), MDs.size(), New);
//.........这里部分代码省略.........
示例9: make_decl_llvm
// make_decl_llvm - Create the DECL_RTL for a VAR_DECL or FUNCTION_DECL. DECL
// should have static storage duration. In other words, it should not be an
// automatic variable, including PARM_DECLs.
//
// There is, however, one exception: this function handles variables explicitly
// placed in a particular register by the user.
//
// This function corresponds to make_decl_rtl in varasm.c, and is implicitly
// called by DECL_LLVM if a decl doesn't have an LLVM set.
//
void make_decl_llvm(tree decl) {
#ifdef ENABLE_CHECKING
// Check that we are not being given an automatic variable.
// A weak alias has TREE_PUBLIC set but not the other bits.
if (TREE_CODE(decl) == PARM_DECL || TREE_CODE(decl) == RESULT_DECL
|| (TREE_CODE(decl) == VAR_DECL && !TREE_STATIC(decl) &&
!TREE_PUBLIC(decl) && !DECL_EXTERNAL(decl) && !DECL_REGISTER(decl)))
abort();
// And that we were not given a type or a label. */
else if (TREE_CODE(decl) == TYPE_DECL || TREE_CODE(decl) == LABEL_DECL)
abort ();
#endif
// For a duplicate declaration, we can be called twice on the
// same DECL node. Don't discard the LLVM already made.
if (DECL_LLVM_SET_P(decl)) return;
if (errorcount || sorrycount)
return; // Do not process broken code.
// Global register variable with asm name, e.g.:
// register unsigned long esp __asm__("ebp");
if (TREE_CODE(decl) != FUNCTION_DECL && DECL_REGISTER(decl)) {
// This just verifies that the variable is ok. The actual "load/store"
// code paths handle accesses to the variable.
ValidateRegisterVariable(decl);
return;
}
timevar_push(TV_LLVM_GLOBALS);
const char *Name = "";
if (DECL_NAME(decl))
if (tree AssemblerName = DECL_ASSEMBLER_NAME(decl))
Name = IDENTIFIER_POINTER(AssemblerName);
// Now handle ordinary static variables and functions (in memory).
// Also handle vars declared register invalidly.
if (Name[0] == 1) {
#ifdef REGISTER_PREFIX
if (strlen (REGISTER_PREFIX) != 0) {
int reg_number = decode_reg_name(Name);
if (reg_number >= 0 || reg_number == -3)
error("%Jregister name given for non-register variable %qD",
decl, decl);
}
#endif
}
// Specifying a section attribute on a variable forces it into a
// non-.bss section, and thus it cannot be common.
if (TREE_CODE(decl) == VAR_DECL && DECL_SECTION_NAME(decl) != NULL_TREE &&
DECL_INITIAL(decl) == NULL_TREE && DECL_COMMON(decl))
DECL_COMMON(decl) = 0;
// Variables can't be both common and weak.
if (TREE_CODE(decl) == VAR_DECL && DECL_WEAK(decl))
DECL_COMMON(decl) = 0;
// Okay, now we need to create an LLVM global variable or function for this
// object. Note that this is quite possibly a forward reference to the
// object, so its type may change later.
if (TREE_CODE(decl) == FUNCTION_DECL) {
assert(Name[0] && "Function with empty name!");
// If this function has already been created, reuse the decl. This happens
// when we have something like __builtin_memset and memset in the same file.
Function *FnEntry = TheModule->getFunction(Name);
if (FnEntry == 0) {
unsigned CC;
const FunctionType *Ty =
TheTypeConverter->ConvertFunctionType(TREE_TYPE(decl), decl, NULL, CC);
FnEntry = new Function(Ty, Function::ExternalLinkage, Name, TheModule);
FnEntry->setCallingConv(CC);
// Check for external weak linkage
if (DECL_EXTERNAL(decl) && DECL_WEAK(decl))
FnEntry->setLinkage(Function::ExternalWeakLinkage);
#ifdef TARGET_ADJUST_LLVM_LINKAGE
TARGET_ADJUST_LLVM_LINKAGE(FnEntry,decl);
#endif /* TARGET_ADJUST_LLVM_LINKAGE */
// Handle visibility style
if (TREE_PUBLIC(decl)) {
if (DECL_VISIBILITY(decl) == VISIBILITY_HIDDEN)
FnEntry->setVisibility(GlobalValue::HiddenVisibility);
else if (DECL_VISIBILITY(decl) == VISIBILITY_PROTECTED)
FnEntry->setVisibility(GlobalValue::ProtectedVisibility);
}
//.........这里部分代码省略.........
示例10: emit_global_to_llvm
/// emit_global_to_llvm - Emit the specified VAR_DECL or aggregate CONST_DECL to
/// LLVM as a global variable. This function implements the end of
/// assemble_variable.
void emit_global_to_llvm(tree decl) {
if (errorcount || sorrycount) return;
// FIXME: Support alignment on globals: DECL_ALIGN.
// FIXME: DECL_PRESERVE_P indicates the var is marked with attribute 'used'.
// Global register variables don't turn into LLVM GlobalVariables.
if (TREE_CODE(decl) == VAR_DECL && DECL_REGISTER(decl))
return;
timevar_push(TV_LLVM_GLOBALS);
// Get or create the global variable now.
GlobalVariable *GV = cast<GlobalVariable>(DECL_LLVM(decl));
// Convert the initializer over.
Constant *Init;
if (DECL_INITIAL(decl) == 0 || DECL_INITIAL(decl) == error_mark_node) {
// This global should be zero initialized. Reconvert the type in case the
// forward def of the global and the real def differ in type (e.g. declared
// as 'int A[]', and defined as 'int A[100]').
Init = Constant::getNullValue(ConvertType(TREE_TYPE(decl)));
} else {
assert((TREE_CONSTANT(DECL_INITIAL(decl)) ||
TREE_CODE(DECL_INITIAL(decl)) == STRING_CST) &&
"Global initializer should be constant!");
// Temporarily set an initializer for the global, so we don't infinitely
// recurse. If we don't do this, we can hit cases where we see "oh a global
// with an initializer hasn't been initialized yet, call emit_global_to_llvm
// on it". When constructing the initializer it might refer to itself.
// this can happen for things like void *G = &G;
//
GV->setInitializer(UndefValue::get(GV->getType()->getElementType()));
Init = TreeConstantToLLVM::Convert(DECL_INITIAL(decl));
}
// If we had a forward definition that has a type that disagrees with our
// initializer, insert a cast now. This sort of thing occurs when we have a
// global union, and the LLVM type followed a union initializer that is
// different from the union element used for the type.
if (GV->getType()->getElementType() != Init->getType()) {
GV->removeFromParent();
GlobalVariable *NGV = new GlobalVariable(Init->getType(), GV->isConstant(),
GlobalValue::ExternalLinkage, 0,
GV->getName(), TheModule);
GV->replaceAllUsesWith(ConstantExpr::getBitCast(NGV, GV->getType()));
delete GV;
SET_DECL_LLVM(decl, NGV);
GV = NGV;
}
// Set the initializer.
GV->setInitializer(Init);
// Set thread local (TLS)
if (TREE_CODE(decl) == VAR_DECL && DECL_THREAD_LOCAL(decl))
GV->setThreadLocal(true);
// Set the linkage.
if (!TREE_PUBLIC(decl)) {
GV->setLinkage(GlobalValue::InternalLinkage);
} else if (DECL_WEAK(decl) || DECL_ONE_ONLY(decl) ||
(DECL_COMMON(decl) && // DECL_COMMON is only meaningful if no init
(!DECL_INITIAL(decl) || DECL_INITIAL(decl) == error_mark_node))) {
// llvm-gcc also includes DECL_VIRTUAL_P here.
GV->setLinkage(GlobalValue::WeakLinkage);
} else if (DECL_COMDAT(decl)) {
GV->setLinkage(GlobalValue::LinkOnceLinkage);
}
#ifdef TARGET_ADJUST_LLVM_LINKAGE
TARGET_ADJUST_LLVM_LINKAGE(GV,decl);
#endif /* TARGET_ADJUST_LLVM_LINKAGE */
// Handle visibility style
if (TREE_PUBLIC(decl)) {
if (DECL_VISIBILITY(decl) == VISIBILITY_HIDDEN)
GV->setVisibility(GlobalValue::HiddenVisibility);
else if (DECL_VISIBILITY(decl) == VISIBILITY_PROTECTED)
GV->setVisibility(GlobalValue::ProtectedVisibility);
}
// Set the section for the global.
if (TREE_CODE(decl) == VAR_DECL || TREE_CODE(decl) == CONST_DECL) {
if (DECL_SECTION_NAME(decl)) {
GV->setSection(TREE_STRING_POINTER(DECL_SECTION_NAME(decl)));
#ifdef LLVM_IMPLICIT_TARGET_GLOBAL_VAR_SECTION
} else if (const char *Section =
LLVM_IMPLICIT_TARGET_GLOBAL_VAR_SECTION(decl)) {
GV->setSection(Section);
#endif
}
// Set the alignment for the global if one of the following condition is met
// 1) DECL_ALIGN_UNIT does not match alignment as per ABI specification
// 2) DECL_ALIGN is set by user.
//.........这里部分代码省略.........