本文整理汇总了C++中GlobalVariable::hasLocalLinkage方法的典型用法代码示例。如果您正苦于以下问题:C++ GlobalVariable::hasLocalLinkage方法的具体用法?C++ GlobalVariable::hasLocalLinkage怎么用?C++ GlobalVariable::hasLocalLinkage使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类GlobalVariable
的用法示例。
在下文中一共展示了GlobalVariable::hasLocalLinkage方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: IsBetterCannonical
// True if A is better than B.
static bool IsBetterCannonical(const GlobalVariable &A,
const GlobalVariable &B) {
if (!A.hasLocalLinkage() && B.hasLocalLinkage())
return true;
if (A.hasLocalLinkage() && !B.hasLocalLinkage())
return false;
return A.hasUnnamedAddr();
}
示例2: runStaticConstructorsDestructors
/// runStaticConstructorsDestructors - This method is used to execute all of
/// the static constructors or destructors for a module, depending on the
/// value of isDtors.
void ExecutionEngine::runStaticConstructorsDestructors(Module *module, bool isDtors) {
const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
// Execute global ctors/dtors for each module in the program.
GlobalVariable *GV = module->getNamedGlobal(Name);
// If this global has internal linkage, or if it has a use, then it must be
// an old-style (llvmgcc3) static ctor with __main linked in and in use. If
// this is the case, don't execute any of the global ctors, __main will do
// it.
if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
// Should be an array of '{ int, void ()* }' structs. The first value is
// the init priority, which we ignore.
ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
if (!InitList) return;
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
if (ConstantStruct *CS =
dyn_cast<ConstantStruct>(InitList->getOperand(i))) {
if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
Constant *FP = CS->getOperand(1);
if (FP->isNullValue())
break; // Found a null terminator, exit.
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
if (CE->isCast())
FP = CE->getOperand(0);
if (Function *F = dyn_cast<Function>(FP)) {
// Execute the ctor/dtor function!
runFunction(F, std::vector<GenericValue>());
}
}
}
示例3: SplitStaticCtorDtor
/// SplitStaticCtorDtor - A module was recently split into two parts, M1/M2, and
/// M1 has all of the global variables. If M2 contains any functions that are
/// static ctors/dtors, we need to add an llvm.global_[cd]tors global to M2, and
/// prune appropriate entries out of M1s list.
static void SplitStaticCtorDtor(const char *GlobalName, Module *M1, Module *M2,
DenseMap<const Value*, Value*> ValueMap) {
GlobalVariable *GV = M1->getNamedGlobal(GlobalName);
if (!GV || GV->isDeclaration() || GV->hasLocalLinkage() ||
!GV->use_empty()) return;
std::vector<std::pair<Function*, int> > M1Tors, M2Tors;
ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
if (!InitList) return;
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
if (CS->getOperand(1)->isNullValue())
break; // Found a null terminator, stop here.
ConstantInt *CI = dyn_cast<ConstantInt>(CS->getOperand(0));
int Priority = CI ? CI->getSExtValue() : 0;
Constant *FP = CS->getOperand(1);
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
if (CE->isCast())
FP = CE->getOperand(0);
if (Function *F = dyn_cast<Function>(FP)) {
if (!F->isDeclaration())
M1Tors.push_back(std::make_pair(F, Priority));
else {
// Map to M2's version of the function.
F = cast<Function>(ValueMap[F]);
M2Tors.push_back(std::make_pair(F, Priority));
}
}
}
}
GV->eraseFromParent();
if (!M1Tors.empty()) {
Constant *M1Init = GetTorInit(M1Tors);
new GlobalVariable(*M1, M1Init->getType(), false,
GlobalValue::AppendingLinkage,
M1Init, GlobalName);
}
GV = M2->getNamedGlobal(GlobalName);
assert(GV && "Not a clone of M1?");
assert(GV->use_empty() && "llvm.ctors shouldn't have uses!");
GV->eraseFromParent();
if (!M2Tors.empty()) {
Constant *M2Init = GetTorInit(M2Tors);
new GlobalVariable(*M2, M2Init->getType(), false,
GlobalValue::AppendingLinkage,
M2Init, GlobalName);
}
}
示例4: runOnModule
bool RegisterGlobals::runOnModule(Module &M) {
TD = &getAnalysis<TargetData>();
VoidTy = Type::getVoidTy(M.getContext());
VoidPtrTy = Type::getInt8PtrTy(M.getContext());
SizeTy = IntegerType::getInt64Ty(M.getContext());
// Create the function prototype
M.getOrInsertFunction("__pool_register_global", VoidTy, VoidPtrTy, SizeTy,
NULL);
RegisterGlobalPoolFunction = M.getFunction("__pool_register_global");
// Create the function that will contain the registration calls
createRegistrationFunction(M);
Module::global_iterator GI = M.global_begin(), GE = M.global_end();
for ( ; GI != GE; ++GI) {
GlobalVariable *GV = GI;
// Skip globals without a size
if (!GV->getType()->getElementType()->isSized())
continue;
// Optionally avoid registering globals with uncertain size.
if (!RegUncertain) {
// Linking can change the size of declarations
if (GV->isDeclaration())
continue;
// Linking can't change the size of defined globals with eternal linkage.
// Linking can't change the size of globals with local linkage.
if (!GV->hasExternalLinkage() && !GV->hasLocalLinkage())
continue;
}
// Thread-local globals would have to be registered for each thread.
// FIXME: add support for thread-local globals
if (GV->isThreadLocal())
continue;
registerGlobal(GV);
}
return true;
}
示例5: lowerGlobalCtors
void MemoryInstrumenter::lowerGlobalCtors(Module &M) {
// Find llvm.global_ctors.
GlobalVariable *GV = M.getNamedGlobal("llvm.global_ctors");
if (!GV)
return;
assert(!GV->isDeclaration() && !GV->hasLocalLinkage());
// Should be an array of '{ int, void ()* }' structs. The first value is
// the init priority, which must be 65535 if the bitcode is generated using
// clang.
if (ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer())) {
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
ConstantStruct *CS =
dyn_cast<ConstantStruct>(InitList->getOperand(i));
assert(CS);
assert(CS->getNumOperands() == 2);
// Get the priority.
ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
assert(Priority);
// TODO: For now, we assume all priorities must be 65535.
assert(Priority->equalsInt(65535));
// Get the constructor function.
Constant *FP = CS->getOperand(1);
if (FP->isNullValue())
break; // Found a null terminator, exit.
// Explicitly call the constructor at the main entry.
CallInst::Create(FP, "", Main->begin()->getFirstNonPHI());
}
}
// Clear the global_ctors array.
// Use eraseFromParent() instead of removeFromParent().
GV->eraseFromParent();
}
示例6: runOnModule
bool ConstantMerge::runOnModule(Module &M) {
TD = getAnalysisIfAvailable<TargetData>();
// Find all the globals that are marked "used". These cannot be merged.
SmallPtrSet<const GlobalValue*, 8> UsedGlobals;
FindUsedValues(M.getGlobalVariable("llvm.used"), UsedGlobals);
FindUsedValues(M.getGlobalVariable("llvm.compiler.used"), UsedGlobals);
// Map unique <constants, has-unknown-alignment> pairs to globals. We don't
// want to merge globals of unknown alignment with those of explicit
// alignment. If we have TargetData, we always know the alignment.
DenseMap<PointerIntPair<Constant*, 1, bool>, GlobalVariable*> CMap;
// Replacements - This vector contains a list of replacements to perform.
SmallVector<std::pair<GlobalVariable*, GlobalVariable*>, 32> Replacements;
bool MadeChange = false;
// Iterate constant merging while we are still making progress. Merging two
// constants together may allow us to merge other constants together if the
// second level constants have initializers which point to the globals that
// were just merged.
while (1) {
// First: Find the canonical constants others will be merged with.
for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
GVI != E; ) {
GlobalVariable *GV = GVI++;
// If this GV is dead, remove it.
GV->removeDeadConstantUsers();
if (GV->use_empty() && GV->hasLocalLinkage()) {
GV->eraseFromParent();
continue;
}
// Only process constants with initializers in the default address space.
if (!GV->isConstant() || !GV->hasDefinitiveInitializer() ||
GV->getType()->getAddressSpace() != 0 || GV->hasSection() ||
// Don't touch values marked with attribute(used).
UsedGlobals.count(GV))
continue;
// This transformation is legal for weak ODR globals in the sense it
// doesn't change semantics, but we really don't want to perform it
// anyway; it's likely to pessimize code generation, and some tools
// (like the Darwin linker in cases involving CFString) don't expect it.
if (GV->isWeakForLinker())
continue;
Constant *Init = GV->getInitializer();
// Check to see if the initializer is already known.
PointerIntPair<Constant*, 1, bool> Pair(Init, hasKnownAlignment(GV));
GlobalVariable *&Slot = CMap[Pair];
// If this is the first constant we find or if the old one is local,
// replace with the current one. If the current is externally visible
// it cannot be replace, but can be the canonical constant we merge with.
if (Slot == 0 || IsBetterCannonical(*GV, *Slot))
Slot = GV;
}
// Second: identify all globals that can be merged together, filling in
// the Replacements vector. We cannot do the replacement in this pass
// because doing so may cause initializers of other globals to be rewritten,
// invalidating the Constant* pointers in CMap.
for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
GVI != E; ) {
GlobalVariable *GV = GVI++;
// Only process constants with initializers in the default address space.
if (!GV->isConstant() || !GV->hasDefinitiveInitializer() ||
GV->getType()->getAddressSpace() != 0 || GV->hasSection() ||
// Don't touch values marked with attribute(used).
UsedGlobals.count(GV))
continue;
// We can only replace constant with local linkage.
if (!GV->hasLocalLinkage())
continue;
Constant *Init = GV->getInitializer();
// Check to see if the initializer is already known.
PointerIntPair<Constant*, 1, bool> Pair(Init, hasKnownAlignment(GV));
GlobalVariable *Slot = CMap[Pair];
if (!Slot || Slot == GV)
continue;
if (!Slot->hasUnnamedAddr() && !GV->hasUnnamedAddr())
continue;
if (!GV->hasUnnamedAddr())
Slot->setUnnamedAddr(false);
// Make all uses of the duplicate constant use the canonical version.
Replacements.push_back(std::make_pair(GV, Slot));
}
//.........这里部分代码省略.........
示例7: runOnModule
bool ConstantMerge::runOnModule(Module &M) {
// Find all the globals that are marked "used". These cannot be merged.
SmallPtrSet<const GlobalValue*, 8> UsedGlobals;
FindUsedValues(M.getGlobalVariable("llvm.used"), UsedGlobals);
FindUsedValues(M.getGlobalVariable("llvm.compiler.used"), UsedGlobals);
// Map unique constant/section pairs to globals. We don't want to merge
// globals in different sections.
DenseMap<Constant*, GlobalVariable*> CMap;
// Replacements - This vector contains a list of replacements to perform.
SmallVector<std::pair<GlobalVariable*, GlobalVariable*>, 32> Replacements;
bool MadeChange = false;
// Iterate constant merging while we are still making progress. Merging two
// constants together may allow us to merge other constants together if the
// second level constants have initializers which point to the globals that
// were just merged.
while (1) {
// First pass: identify all globals that can be merged together, filling in
// the Replacements vector. We cannot do the replacement in this pass
// because doing so may cause initializers of other globals to be rewritten,
// invalidating the Constant* pointers in CMap.
//
for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
GVI != E; ) {
GlobalVariable *GV = GVI++;
// If this GV is dead, remove it.
GV->removeDeadConstantUsers();
if (GV->use_empty() && GV->hasLocalLinkage()) {
GV->eraseFromParent();
continue;
}
// Only process constants with initializers in the default addres space.
if (!GV->isConstant() ||!GV->hasDefinitiveInitializer() ||
GV->getType()->getAddressSpace() != 0 || !GV->getSection().empty() ||
// Don't touch values marked with attribute(used).
UsedGlobals.count(GV))
continue;
Constant *Init = GV->getInitializer();
// Check to see if the initializer is already known.
GlobalVariable *&Slot = CMap[Init];
if (Slot == 0) { // Nope, add it to the map.
Slot = GV;
} else if (GV->hasLocalLinkage()) { // Yup, this is a duplicate!
// Make all uses of the duplicate constant use the canonical version.
Replacements.push_back(std::make_pair(GV, Slot));
}
}
if (Replacements.empty())
return MadeChange;
CMap.clear();
// Now that we have figured out which replacements must be made, do them all
// now. This avoid invalidating the pointers in CMap, which are unneeded
// now.
for (unsigned i = 0, e = Replacements.size(); i != e; ++i) {
// Eliminate any uses of the dead global.
Replacements[i].first->replaceAllUsesWith(Replacements[i].second);
// Delete the global value from the module.
Replacements[i].first->eraseFromParent();
}
NumMerged += Replacements.size();
Replacements.clear();
}
}
示例8: calculateGraphs
//
// Method: postOrderInline()
//
// Description:
// This methods does a post order traversal of the call graph and performs
// bottom-up inlining of the DSGraphs.
//
void
BUDataStructures::postOrderInline (Module & M) {
// Variables used for Tarjan SCC-finding algorithm. These are passed into
// the recursive function used to find SCCs.
std::vector<const Function*> Stack;
std::map<const Function*, unsigned> ValMap;
unsigned NextID = 1;
// Do post order traversal on the global ctors. Use this information to update
// the globals graph.
const char *Name = "llvm.global_ctors";
GlobalVariable *GV = M.getNamedGlobal(Name);
if (GV && !(GV->isDeclaration()) && !(GV->hasLocalLinkage())) {
// Should be an array of '{ int, void ()* }' structs. The first value is
// the init priority, which we ignore.
ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
if (InitList) {
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))) {
if (CS->getNumOperands() != 2)
break; // Not array of 2-element structs.
Constant *FP = CS->getOperand(1);
if (FP->isNullValue())
break; // Found a null terminator, exit.
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
if (CE->isCast())
FP = CE->getOperand(0);
Function *F = dyn_cast<Function>(FP);
if (F && !F->isDeclaration() && !ValMap.count(F)) {
calculateGraphs(F, Stack, NextID, ValMap);
CloneAuxIntoGlobal(getDSGraph(*F));
}
}
GlobalsGraph->removeTriviallyDeadNodes();
GlobalsGraph->maskIncompleteMarkers();
// Mark external globals incomplete.
GlobalsGraph->markIncompleteNodes(DSGraph::IgnoreGlobals);
GlobalsGraph->computeExternalFlags(DSGraph::DontMarkFormalsExternal);
GlobalsGraph->computeIntPtrFlags();
//
// Create equivalence classes for aliasing globals so that we only need to
// record one global per DSNode.
//
formGlobalECs();
// propogte information calculated
// from the globals graph to the other graphs.
for (Module::iterator F = M.begin(); F != M.end(); ++F) {
if (!(F->isDeclaration())){
DSGraph *Graph = getDSGraph(*F);
cloneGlobalsInto(Graph, DSGraph::DontCloneCallNodes |
DSGraph::DontCloneAuxCallNodes);
Graph->buildCallGraph(callgraph, GlobalFunctionList, filterCallees);
Graph->maskIncompleteMarkers();
Graph->markIncompleteNodes(DSGraph::MarkFormalArgs |
DSGraph::IgnoreGlobals);
Graph->computeExternalFlags(DSGraph::DontMarkFormalsExternal);
Graph->computeIntPtrFlags();
}
}
}
}
//
// Start the post order traversal with the main() function. If there is no
// main() function, don't worry; we'll have a separate traversal for inlining
// graphs for functions not reachable from main().
//
Function *MainFunc = M.getFunction ("main");
if (MainFunc && !MainFunc->isDeclaration()) {
calculateGraphs(MainFunc, Stack, NextID, ValMap);
CloneAuxIntoGlobal(getDSGraph(*MainFunc));
}
//
// Calculate the graphs for any functions that are unreachable from main...
//
for (Function &F : M)
if (!F.isDeclaration() && !ValMap.count(&F)) {
if (MainFunc)
DEBUG(errs() << debugname << ": Function unreachable from main: "
<< F.getName() << "\n");
calculateGraphs(&F, Stack, NextID, ValMap); // Calculate all graphs.
CloneAuxIntoGlobal(getDSGraph(F));
// Mark this graph as processed. Do this by finding all functions
// in the graph that map to it, and mark them visited.
// Note that this really should be handled neatly by calculateGraphs
// itself, not here. However this catches the worst offenders.
DSGraph *G = getDSGraph(F);
//.........这里部分代码省略.........