本文整理汇总了C++中Geometry::ProbLo方法的典型用法代码示例。如果您正苦于以下问题:C++ Geometry::ProbLo方法的具体用法?C++ Geometry::ProbLo怎么用?C++ Geometry::ProbLo使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Geometry
的用法示例。
在下文中一共展示了Geometry::ProbLo方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: average_face_to_cellcenter
void average_face_to_cellcenter (MultiFab& cc, const PArray<MultiFab>& fc, const Geometry& geom)
{
BL_ASSERT(cc.nComp() >= BL_SPACEDIM);
BL_ASSERT(fc.size() == BL_SPACEDIM);
BL_ASSERT(fc[0].nComp() == 1); // We only expect fc to have the gradient perpendicular to the face
const Real* dx = geom.CellSize();
const Real* problo = geom.ProbLo();
int coord_type = Geometry::Coord();
#ifdef _OPENMP
#pragma omp parallel
#endif
for (MFIter mfi(cc,true); mfi.isValid(); ++mfi)
{
const Box& bx = mfi.tilebox();
BL_FORT_PROC_CALL(BL_AVG_FC_TO_CC,bl_avg_fc_to_cc)
(bx.loVect(), bx.hiVect(),
BL_TO_FORTRAN(cc[mfi]),
D_DECL(BL_TO_FORTRAN(fc[0][mfi]),
BL_TO_FORTRAN(fc[1][mfi]),
BL_TO_FORTRAN(fc[2][mfi])),
dx, problo, coord_type);
}
}
示例2:
IntVect
ParticleBase::Index (const ParticleBase& p,
const Geometry& geom)
{
IntVect iv;
D_TERM(iv[0]=floor((p.m_pos[0]-geom.ProbLo(0))/geom.CellSize(0));,
示例3: average_cellcenter_to_face
void average_cellcenter_to_face (PArray<MultiFab>& fc, const MultiFab& cc, const Geometry& geom)
{
BL_ASSERT(cc.nComp() == 1);
BL_ASSERT(cc.nGrow() >= 1);
BL_ASSERT(fc.size() == BL_SPACEDIM);
BL_ASSERT(fc[0].nComp() == 1); // We only expect fc to have the gradient perpendicular to the face
const Real* dx = geom.CellSize();
const Real* problo = geom.ProbLo();
int coord_type = Geometry::Coord();
#ifdef _OPENMP
#pragma omp parallel
#endif
for (MFIter mfi(cc,true); mfi.isValid(); ++mfi)
{
const Box& xbx = mfi.nodaltilebox(0);
#if (BL_SPACEDIM > 1)
const Box& ybx = mfi.nodaltilebox(1);
#endif
#if (BL_SPACEDIM == 3)
const Box& zbx = mfi.nodaltilebox(2);
#endif
BL_FORT_PROC_CALL(BL_AVG_CC_TO_FC,bl_avg_cc_to_fc)
(xbx.loVect(), xbx.hiVect(),
#if (BL_SPACEDIM > 1)
ybx.loVect(), ybx.hiVect(),
#endif
#if (BL_SPACEDIM == 3)
zbx.loVect(), zbx.hiVect(),
#endif
D_DECL(BL_TO_FORTRAN(fc[0][mfi]),
BL_TO_FORTRAN(fc[1][mfi]),
BL_TO_FORTRAN(fc[2][mfi])),
BL_TO_FORTRAN(cc[mfi]),
dx, problo, coord_type);
}
}
示例4: io_buffer
void
writePlotFile (const std::string& dir,
const MultiFab& mf,
const Geometry& geom)
{
//
// Only let 64 CPUs be writing at any one time.
//
VisMF::SetNOutFiles(64);
//
// Only the I/O processor makes the directory if it doesn't already exist.
//
if (ParallelDescriptor::IOProcessor())
if (!BoxLib::UtilCreateDirectory(dir, 0755))
BoxLib::CreateDirectoryFailed(dir);
//
// Force other processors to wait till directory is built.
//
ParallelDescriptor::Barrier();
std::string HeaderFileName = dir + "/Header";
VisMF::IO_Buffer io_buffer(VisMF::IO_Buffer_Size);
std::ofstream HeaderFile;
HeaderFile.rdbuf()->pubsetbuf(io_buffer.dataPtr(), io_buffer.size());
if (ParallelDescriptor::IOProcessor())
{
//
// Only the IOProcessor() writes to the header file.
//
HeaderFile.open(HeaderFileName.c_str(), std::ios::out|std::ios::trunc|std::ios::binary);
if (!HeaderFile.good())
BoxLib::FileOpenFailed(HeaderFileName);
HeaderFile << "NavierStokes-V1.1\n";
HeaderFile << mf.nComp() << '\n';
for (int ivar = 1; ivar <= mf.nComp(); ivar++) {
HeaderFile << "Variable " << ivar << "\n";
}
HeaderFile << BL_SPACEDIM << '\n';
HeaderFile << 0 << '\n';
HeaderFile << 0 << '\n';
for (int i = 0; i < BL_SPACEDIM; i++)
HeaderFile << geom.ProbLo(i) << ' ';
HeaderFile << '\n';
for (int i = 0; i < BL_SPACEDIM; i++)
HeaderFile << geom.ProbHi(i) << ' ';
HeaderFile << '\n';
HeaderFile << '\n';
HeaderFile << geom.Domain() << ' ';
HeaderFile << '\n';
HeaderFile << 0 << ' ';
HeaderFile << '\n';
for (int k = 0; k < BL_SPACEDIM; k++)
HeaderFile << geom.CellSize()[k] << ' ';
HeaderFile << '\n';
HeaderFile << geom.Coord() << '\n';
HeaderFile << "0\n";
}
// Build the directory to hold the MultiFab at this level.
// The name is relative to the directory containing the Header file.
//
static const std::string BaseName = "/Cell";
std::string Level = BoxLib::Concatenate("Level_", 0, 1);
//
// Now for the full pathname of that directory.
//
std::string FullPath = dir;
if (!FullPath.empty() && FullPath[FullPath.length()-1] != '/')
FullPath += '/';
FullPath += Level;
//
// Only the I/O processor makes the directory if it doesn't already exist.
//
if (ParallelDescriptor::IOProcessor())
if (!BoxLib::UtilCreateDirectory(FullPath, 0755))
BoxLib::CreateDirectoryFailed(FullPath);
//
// Force other processors to wait till directory is built.
//
ParallelDescriptor::Barrier();
if (ParallelDescriptor::IOProcessor())
{
HeaderFile << 0 << ' ' << mf.boxArray().size() << ' ' << 0 << '\n';
HeaderFile << 0 << '\n';
for (int i = 0; i < mf.boxArray().size(); ++i)
{
RealBox loc = RealBox(mf.boxArray()[i],geom.CellSize(),geom.ProbLo());
for (int n = 0; n < BL_SPACEDIM; n++)
HeaderFile << loc.lo(n) << ' ' << loc.hi(n) << '\n';
}
//.........这里部分代码省略.........
示例5: main_main
//.........这里部分代码省略.........
is_periodic[i] = 1;
}
}
// This defines a Geometry object
geom.define(domain,&real_box,coord,is_periodic);
}
// Boundary conditions
PhysBCFunct physbcf;
BCRec bcr(&lo_bc[0], &hi_bc[0]);
physbcf.define(geom, bcr, BndryFunctBase(phifill)); // phifill is a fortran function
// define dx[]
const Real* dx = geom.CellSize();
// Nghost = number of ghost cells for each array
int Nghost = 1;
// Ncomp = number of components for each array
int Ncomp = 1;
// time = starting time in the simulation
Real time = 0.0;
// we allocate two phi multifabs; one will store the old state, the other the new
// we swap the indices each time step to avoid copies of new into old
PArray<MultiFab> phi(2, PArrayManage);
phi.set(0, new MultiFab(ba, Ncomp, Nghost));
phi.set(1, new MultiFab(ba, Ncomp, Nghost));
// Initialize both to zero (just because)
phi[0].setVal(0.0);
phi[1].setVal(0.0);
// Initialize phi[init_index] by calling a Fortran routine.
// MFIter = MultiFab Iterator
int init_index = 0;
for ( MFIter mfi(phi[init_index]); mfi.isValid(); ++mfi )
{
const Box& bx = mfi.validbox();
init_phi(phi[init_index][mfi].dataPtr(),
bx.loVect(), bx.hiVect(), &Nghost,
geom.CellSize(), geom.ProbLo(), geom.ProbHi());
}
// compute the time step
Real dt = 0.9*dx[0]*dx[0] / (2.0*BL_SPACEDIM);
// Write a plotfile of the initial data if plot_int > 0 (plot_int was defined in the inputs file)
if (plot_int > 0)
{
int n = 0;
const std::string& pltfile = BoxLib::Concatenate("plt",n,5);
writePlotFile(pltfile, phi[init_index], geom, time);
}
// build the flux multifabs
PArray<MultiFab> flux(BL_SPACEDIM, PArrayManage);
for (int dir = 0; dir < BL_SPACEDIM; dir++)
{
// flux(dir) has one component, zero ghost cells, and is nodal in direction dir
BoxArray edge_ba = ba;
edge_ba.surroundingNodes(dir);
flux.set(dir, new MultiFab(edge_ba, 1, 0));
}
int old_index = init_index;
for (int n = 1; n <= nsteps; n++, old_index = 1 - old_index)
{
int new_index = 1 - old_index;
// new_phi = old_phi + dt * (something)
advance(phi[old_index], phi[new_index], flux, time, dt, geom, physbcf, bcr);
time = time + dt;
// Tell the I/O Processor to write out which step we're doing
if (ParallelDescriptor::IOProcessor())
std::cout << "Advanced step " << n << std::endl;
// Write a plotfile of the current data (plot_int was defined in the inputs file)
if (plot_int > 0 && n%plot_int == 0)
{
const std::string& pltfile = BoxLib::Concatenate("plt",n,5);
writePlotFile(pltfile, phi[new_index], geom, time);
}
}
// Call the timer again and compute the maximum difference between the start time and stop time
// over all processors
Real stop_time = ParallelDescriptor::second() - strt_time;
const int IOProc = ParallelDescriptor::IOProcessorNumber();
ParallelDescriptor::ReduceRealMax(stop_time,IOProc);
// Tell the I/O Processor to write out the "run time"
if (ParallelDescriptor::IOProcessor()) {
std::cout << "Run time = " << stop_time << std::endl;
}
}