本文整理汇总了C++中FluidState::setDensity方法的典型用法代码示例。如果您正苦于以下问题:C++ FluidState::setDensity方法的具体用法?C++ FluidState::setDensity怎么用?C++ FluidState::setDensity使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类FluidState
的用法示例。
在下文中一共展示了FluidState::setDensity方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: completeReferenceFluidState
void completeReferenceFluidState(FluidState &fs,
typename MaterialLaw::Params &matParams,
int refPhaseIdx)
{
enum { numPhases = FluidSystem::numPhases };
typedef Dune::FieldVector<Scalar, numPhases> PhaseVector;
int otherPhaseIdx = 1 - refPhaseIdx;
// calculate the other saturation
fs.setSaturation(otherPhaseIdx, 1.0 - fs.saturation(refPhaseIdx));
// calulate the capillary pressure
PhaseVector pC;
MaterialLaw::capillaryPressures(pC, matParams, fs);
fs.setPressure(otherPhaseIdx,
fs.pressure(refPhaseIdx)
+ (pC[otherPhaseIdx] - pC[refPhaseIdx]));
// set all phase densities
typename FluidSystem::ParameterCache paramCache;
paramCache.updateAll(fs);
for (int phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
Scalar rho = FluidSystem::density(fs, paramCache, phaseIdx);
fs.setDensity(phaseIdx, rho);
}
}
示例2: createSurfaceGasFluidSystem
void createSurfaceGasFluidSystem(FluidState& gasFluidState)
{
static const int gasPhaseIdx = FluidSystem::gasPhaseIdx;
// temperature
gasFluidState.setTemperature(273.15 + 20);
// gas pressure
gasFluidState.setPressure(gasPhaseIdx, 1e5);
// gas saturation
gasFluidState.setSaturation(gasPhaseIdx, 1.0);
// gas composition: mostly methane, a bit of propane
gasFluidState.setMoleFraction(gasPhaseIdx, FluidSystem::H2OIdx, 0.0);
gasFluidState.setMoleFraction(gasPhaseIdx, FluidSystem::C1Idx, 0.94);
gasFluidState.setMoleFraction(gasPhaseIdx, FluidSystem::C3Idx, 0.06);
gasFluidState.setMoleFraction(gasPhaseIdx, FluidSystem::C6Idx, 0.00);
gasFluidState.setMoleFraction(gasPhaseIdx, FluidSystem::C10Idx, 0.00);
gasFluidState.setMoleFraction(gasPhaseIdx, FluidSystem::C15Idx, 0.00);
gasFluidState.setMoleFraction(gasPhaseIdx, FluidSystem::C20Idx, 0.00);
// gas density
typename FluidSystem::template ParameterCache<typename FluidState::Scalar> paramCache;
paramCache.updatePhase(gasFluidState, gasPhaseIdx);
gasFluidState.setDensity(gasPhaseIdx,
FluidSystem::density(gasFluidState, paramCache, gasPhaseIdx));
}
示例3: solveIdealMix_
static void solveIdealMix_(FluidState &fluidState,
ParameterCache ¶mCache,
int phaseIdx,
const ComponentVector &fugacities)
{
for (int i = 0; i < numComponents; ++ i) {
const Evaluation& phi = FluidSystem::fugacityCoefficient(fluidState,
paramCache,
phaseIdx,
i);
const Evaluation& gamma = phi * fluidState.pressure(phaseIdx);
Valgrind::CheckDefined(phi);
Valgrind::CheckDefined(gamma);
Valgrind::CheckDefined(fugacities[i]);
fluidState.setFugacityCoefficient(phaseIdx, i, phi);
fluidState.setMoleFraction(phaseIdx, i, fugacities[i]/gamma);
};
paramCache.updatePhase(fluidState, phaseIdx);
const Evaluation& rho = FluidSystem::density(fluidState, paramCache, phaseIdx);
fluidState.setDensity(phaseIdx, rho);
return;
}
示例4: solve
//.........这里部分代码省略.........
FluidSystem::fugacityCoefficient(fluidState, paramCache, phaseIdx, compIdx));
fluidState.setFugacityCoefficient(phaseIdx, compIdx, fugCoeff);
}
}
// create the linear system of equations which defines the
// mole fractions
static const int numEq = numComponents*numPhases;
Dune::FieldMatrix<Evaluation, numEq, numEq> M(Toolbox::createConstant(0.0));
Dune::FieldVector<Evaluation, numEq> x(Toolbox::createConstant(0.0));
Dune::FieldVector<Evaluation, numEq> b(Toolbox::createConstant(0.0));
// assemble the equations expressing the fact that the
// fugacities of each component are equal in all phases
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
const Evaluation& entryCol1 =
fluidState.fugacityCoefficient(/*phaseIdx=*/0, compIdx)
*fluidState.pressure(/*phaseIdx=*/0);
unsigned col1Idx = compIdx;
for (unsigned phaseIdx = 1; phaseIdx < numPhases; ++phaseIdx) {
unsigned rowIdx = (phaseIdx - 1)*numComponents + compIdx;
unsigned col2Idx = phaseIdx*numComponents + compIdx;
const Evaluation& entryCol2 =
fluidState.fugacityCoefficient(phaseIdx, compIdx)
*fluidState.pressure(phaseIdx);
M[rowIdx][col1Idx] = entryCol1;
M[rowIdx][col2Idx] = -entryCol2;
}
}
// assemble the equations expressing the assumption that the
// sum of all mole fractions in each phase must be 1 for the
// phases present.
unsigned presentPhases = 0;
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!(phasePresence & (1 << phaseIdx)))
continue;
unsigned rowIdx = numComponents*(numPhases - 1) + presentPhases;
presentPhases += 1;
b[rowIdx] = Toolbox::createConstant(1.0);
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
unsigned colIdx = phaseIdx*numComponents + compIdx;
M[rowIdx][colIdx] = Toolbox::createConstant(1.0);
}
}
assert(presentPhases + numAuxConstraints == numComponents);
// incorperate the auxiliary equations, i.e., the explicitly given mole fractions
for (unsigned auxEqIdx = 0; auxEqIdx < numAuxConstraints; ++auxEqIdx) {
unsigned rowIdx = numComponents*(numPhases - 1) + presentPhases + auxEqIdx;
b[rowIdx] = auxConstraints[auxEqIdx].value();
unsigned colIdx = auxConstraints[auxEqIdx].phaseIdx()*numComponents + auxConstraints[auxEqIdx].compIdx();
M[rowIdx][colIdx] = 1.0;
}
// solve for all mole fractions
try {
Dune::FMatrixPrecision<Scalar>::set_singular_limit(1e-50);
M.solve(x, b);
}
catch (const Dune::FMatrixError &e) {
OPM_THROW(NumericalProblem,
"Numerical problem in MiscibleMultiPhaseComposition::solve(): " << e.what() << "; M="<<M);
}
catch (...) {
throw;
}
// set all mole fractions and the additional quantities in
// the fluid state
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
unsigned rowIdx = phaseIdx*numComponents + compIdx;
fluidState.setMoleFraction(phaseIdx, compIdx, x[rowIdx]);
}
paramCache.updateComposition(fluidState, phaseIdx);
const Evaluation& rho = FluidSystem::density(fluidState, paramCache, phaseIdx);
fluidState.setDensity(phaseIdx, rho);
if (setViscosity) {
const Evaluation& mu = FluidSystem::viscosity(fluidState, paramCache, phaseIdx);
fluidState.setViscosity(phaseIdx, mu);
}
if (setInternalEnergy) {
const Evaluation& h = FluidSystem::enthalpy(fluidState, paramCache, phaseIdx);
fluidState.setEnthalpy(phaseIdx, h);
}
}
}
示例5: solve
static void solve(FluidState& fluidState,
typename FluidSystem::template ParameterCache<typename FluidState::Scalar>& paramCache,
unsigned refPhaseIdx,
bool setViscosity,
bool setEnthalpy)
{
typedef MathToolbox<typename FluidState::Scalar> FsToolbox;
// compute the density and enthalpy of the
// reference phase
paramCache.updatePhase(fluidState, refPhaseIdx);
fluidState.setDensity(refPhaseIdx,
FluidSystem::density(fluidState,
paramCache,
refPhaseIdx));
if (setEnthalpy)
fluidState.setEnthalpy(refPhaseIdx,
FluidSystem::enthalpy(fluidState,
paramCache,
refPhaseIdx));
if (setViscosity)
fluidState.setViscosity(refPhaseIdx,
FluidSystem::viscosity(fluidState,
paramCache,
refPhaseIdx));
// compute the fugacities of all components in the reference phase
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
fluidState.setFugacityCoefficient(refPhaseIdx,
compIdx,
FluidSystem::fugacityCoefficient(fluidState,
paramCache,
refPhaseIdx,
compIdx));
}
// compute all quantities for the non-reference phases
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (phaseIdx == refPhaseIdx)
continue; // reference phase is already calculated
ComponentVector fugVec;
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
const auto& fug = fluidState.fugacity(refPhaseIdx, compIdx);
fugVec[compIdx] = FsToolbox::template decay<Evaluation>(fug);
}
CompositionFromFugacities::solve(fluidState, paramCache, phaseIdx, fugVec);
if (setViscosity)
fluidState.setViscosity(phaseIdx,
FluidSystem::viscosity(fluidState,
paramCache,
phaseIdx));
if (setEnthalpy)
fluidState.setEnthalpy(phaseIdx,
FluidSystem::enthalpy(fluidState,
paramCache,
phaseIdx));
}
}
示例6: solve
static void solve(FluidState &fluidState,
ParameterCache ¶mCache,
int phaseIdx,
const ComponentVector &targetFug)
{
typedef MathToolbox<Evaluation> Toolbox;
// use a much more efficient method in case the phase is an
// ideal mixture
if (FluidSystem::isIdealMixture(phaseIdx)) {
solveIdealMix_(fluidState, paramCache, phaseIdx, targetFug);
return;
}
//Dune::FMatrixPrecision<Scalar>::set_singular_limit(1e-25);
// save initial composition in case something goes wrong
Dune::FieldVector<Evaluation, numComponents> xInit;
for (int i = 0; i < numComponents; ++i) {
xInit[i] = fluidState.moleFraction(phaseIdx, i);
}
/////////////////////////
// Newton method
/////////////////////////
// Jacobian matrix
Dune::FieldMatrix<Evaluation, numComponents, numComponents> J;
// solution, i.e. phase composition
Dune::FieldVector<Evaluation, numComponents> x;
// right hand side
Dune::FieldVector<Evaluation, numComponents> b;
paramCache.updatePhase(fluidState, phaseIdx);
// maximum number of iterations
const int nMax = 25;
for (int nIdx = 0; nIdx < nMax; ++nIdx) {
// calculate Jacobian matrix and right hand side
linearize_(J, b, fluidState, paramCache, phaseIdx, targetFug);
Valgrind::CheckDefined(J);
Valgrind::CheckDefined(b);
/*
std::cout << FluidSystem::phaseName(phaseIdx) << "Phase composition: ";
for (int i = 0; i < FluidSystem::numComponents; ++i)
std::cout << fluidState.moleFraction(phaseIdx, i) << " ";
std::cout << "\n";
std::cout << FluidSystem::phaseName(phaseIdx) << "Phase phi: ";
for (int i = 0; i < FluidSystem::numComponents; ++i)
std::cout << fluidState.fugacityCoefficient(phaseIdx, i) << " ";
std::cout << "\n";
*/
// Solve J*x = b
x = Toolbox::createConstant(0.0);
try { J.solve(x, b); }
catch (Dune::FMatrixError e)
{ throw Opm::NumericalIssue(e.what()); }
//std::cout << "original delta: " << x << "\n";
Valgrind::CheckDefined(x);
/*
std::cout << FluidSystem::phaseName(phaseIdx) << "Phase composition: ";
for (int i = 0; i < FluidSystem::numComponents; ++i)
std::cout << fluidState.moleFraction(phaseIdx, i) << " ";
std::cout << "\n";
std::cout << "J: " << J << "\n";
std::cout << "rho: " << fluidState.density(phaseIdx) << "\n";
std::cout << "delta: " << x << "\n";
std::cout << "defect: " << b << "\n";
std::cout << "J: " << J << "\n";
std::cout << "---------------------------\n";
*/
// update the fluid composition. b is also used to store
// the defect for the next iteration.
Scalar relError = update_(fluidState, paramCache, x, b, phaseIdx, targetFug);
if (relError < 1e-9) {
const Evaluation& rho = FluidSystem::density(fluidState, paramCache, phaseIdx);
fluidState.setDensity(phaseIdx, rho);
//std::cout << "num iterations: " << nIdx << "\n";
return;
}
}
OPM_THROW(Opm::NumericalIssue,
"Calculating the " << FluidSystem::phaseName(phaseIdx)
<< "Phase composition failed. Initial {x} = {"
<< xInit
<< "}, {fug_t} = {" << targetFug << "}, p = " << fluidState.pressure(phaseIdx)
<< ", T = " << fluidState.temperature(phaseIdx));
}
示例7: bringOilToSurface
Scalar bringOilToSurface(FluidState& surfaceFluidState, Scalar alpha, const FluidState& reservoirFluidState, bool guessInitial)
{
enum {
numPhases = FluidSystem::numPhases,
waterPhaseIdx = FluidSystem::waterPhaseIdx,
gasPhaseIdx = FluidSystem::gasPhaseIdx,
oilPhaseIdx = FluidSystem::oilPhaseIdx,
numComponents = FluidSystem::numComponents
};
typedef Opm::NcpFlash<Scalar, FluidSystem> Flash;
typedef Opm::ThreePhaseMaterialTraits<Scalar, waterPhaseIdx, oilPhaseIdx, gasPhaseIdx> MaterialTraits;
typedef Opm::LinearMaterial<MaterialTraits> MaterialLaw;
typedef typename MaterialLaw::Params MaterialLawParams;
typedef Dune::FieldVector<Scalar, numComponents> ComponentVector;
const Scalar refPressure = 1.0135e5; // [Pa]
// set the parameters for the capillary pressure law
MaterialLawParams matParams;
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
matParams.setPcMinSat(phaseIdx, 0.0);
matParams.setPcMaxSat(phaseIdx, 0.0);
}
matParams.finalize();
// retieve the global volumetric component molarities
surfaceFluidState.setTemperature(273.15 + 20);
ComponentVector molarities;
for (unsigned compIdx = 0; compIdx < numComponents; ++ compIdx)
molarities[compIdx] = reservoirFluidState.molarity(oilPhaseIdx, compIdx);
if (guessInitial) {
// we start at a fluid state with reservoir oil.
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
for (unsigned compIdx = 0; compIdx < numComponents; ++ compIdx) {
surfaceFluidState.setMoleFraction(phaseIdx,
compIdx,
reservoirFluidState.moleFraction(phaseIdx, compIdx));
}
surfaceFluidState.setDensity(phaseIdx, reservoirFluidState.density(phaseIdx));
surfaceFluidState.setPressure(phaseIdx, reservoirFluidState.pressure(phaseIdx));
surfaceFluidState.setSaturation(phaseIdx, 0.0);
}
surfaceFluidState.setSaturation(oilPhaseIdx, 1.0);
surfaceFluidState.setSaturation(gasPhaseIdx, 1.0 - surfaceFluidState.saturation(oilPhaseIdx));
}
typename FluidSystem::template ParameterCache<Scalar> paramCache;
paramCache.updateAll(surfaceFluidState);
// increase volume until we are at surface pressure. use the
// newton method for this
ComponentVector tmpMolarities;
for (int i = 0;; ++i) {
if (i >= 20)
throw Opm::NumericalIssue("Newton method did not converge after 20 iterations");
// calculate the deviation from the standard pressure
tmpMolarities = molarities;
tmpMolarities /= alpha;
Flash::template solve<MaterialLaw>(surfaceFluidState, matParams, paramCache, tmpMolarities);
Scalar f = surfaceFluidState.pressure(gasPhaseIdx) - refPressure;
// calculate the derivative of the deviation from the standard
// pressure
Scalar eps = alpha*1e-10;
tmpMolarities = molarities;
tmpMolarities /= alpha + eps;
Flash::template solve<MaterialLaw>(surfaceFluidState, matParams, paramCache, tmpMolarities);
Scalar fStar = surfaceFluidState.pressure(gasPhaseIdx) - refPressure;
Scalar fPrime = (fStar - f)/eps;
// newton update
Scalar delta = f/fPrime;
alpha -= delta;
if (std::abs(delta) < std::abs(alpha)*1e-9) {
break;
}
}
// calculate the final result
tmpMolarities = molarities;
tmpMolarities /= alpha;
Flash::template solve<MaterialLaw>(surfaceFluidState, matParams, paramCache, tmpMolarities);
return alpha;
}