本文整理汇总了C++中FluidState::fugacityCoefficient方法的典型用法代码示例。如果您正苦于以下问题:C++ FluidState::fugacityCoefficient方法的具体用法?C++ FluidState::fugacityCoefficient怎么用?C++ FluidState::fugacityCoefficient使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类FluidState
的用法示例。
在下文中一共展示了FluidState::fugacityCoefficient方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: assign
void assign(const FluidState& fs)
{
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
fugacityCoefficient_[phaseIdx][compIdx] = fs.fugacityCoefficient(phaseIdx, compIdx);
}
}
}
示例2: calculateDefect_
static Scalar calculateDefect_(const FluidState ¶ms,
int phaseIdx,
const ComponentVector &targetFug)
{
Scalar result = 0.0;
for (int i = 0; i < numComponents; ++i) {
// sum of the fugacity defect weighted by the inverse
// fugacity coefficient
result += std::abs(
(targetFug[i] - params.fugacity(phaseIdx, i))
/
params.fugacityCoefficient(phaseIdx, i) );
};
return result;
}
示例3: solve
static void solve(FluidState &fluidState,
ParameterCache ¶mCache,
int phasePresence,
const MMPCAuxConstraint<Evaluation> *auxConstraints,
unsigned numAuxConstraints,
bool setViscosity,
bool setInternalEnergy)
{
typedef MathToolbox<typename FluidState::Scalar> FsToolbox;
static_assert(std::is_same<typename FluidState::Scalar, Evaluation>::value,
"The scalar type of the fluid state must be 'Evaluation'");
#ifndef NDEBUG
// currently this solver can only handle fluid systems which
// assume ideal mixtures of all fluids. TODO: relax this
// (requires solving a non-linear system of equations, i.e. using
// newton method.)
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
assert(FluidSystem::isIdealMixture(phaseIdx));
}
#endif
// compute all fugacity coefficients
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
paramCache.updatePhase(fluidState, phaseIdx);
// since we assume ideal mixtures, the fugacity
// coefficients of the components cannot depend on
// composition, i.e. the parameters in the cache are valid
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
Evaluation fugCoeff = FsToolbox::template toLhs<Evaluation>(
FluidSystem::fugacityCoefficient(fluidState, paramCache, phaseIdx, compIdx));
fluidState.setFugacityCoefficient(phaseIdx, compIdx, fugCoeff);
}
}
// create the linear system of equations which defines the
// mole fractions
static const int numEq = numComponents*numPhases;
Dune::FieldMatrix<Evaluation, numEq, numEq> M(Toolbox::createConstant(0.0));
Dune::FieldVector<Evaluation, numEq> x(Toolbox::createConstant(0.0));
Dune::FieldVector<Evaluation, numEq> b(Toolbox::createConstant(0.0));
// assemble the equations expressing the fact that the
// fugacities of each component are equal in all phases
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
const Evaluation& entryCol1 =
fluidState.fugacityCoefficient(/*phaseIdx=*/0, compIdx)
*fluidState.pressure(/*phaseIdx=*/0);
unsigned col1Idx = compIdx;
for (unsigned phaseIdx = 1; phaseIdx < numPhases; ++phaseIdx) {
unsigned rowIdx = (phaseIdx - 1)*numComponents + compIdx;
unsigned col2Idx = phaseIdx*numComponents + compIdx;
const Evaluation& entryCol2 =
fluidState.fugacityCoefficient(phaseIdx, compIdx)
*fluidState.pressure(phaseIdx);
M[rowIdx][col1Idx] = entryCol1;
M[rowIdx][col2Idx] = -entryCol2;
}
}
// assemble the equations expressing the assumption that the
// sum of all mole fractions in each phase must be 1 for the
// phases present.
unsigned presentPhases = 0;
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
if (!(phasePresence & (1 << phaseIdx)))
continue;
unsigned rowIdx = numComponents*(numPhases - 1) + presentPhases;
presentPhases += 1;
b[rowIdx] = Toolbox::createConstant(1.0);
for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) {
unsigned colIdx = phaseIdx*numComponents + compIdx;
M[rowIdx][colIdx] = Toolbox::createConstant(1.0);
}
}
assert(presentPhases + numAuxConstraints == numComponents);
// incorperate the auxiliary equations, i.e., the explicitly given mole fractions
for (unsigned auxEqIdx = 0; auxEqIdx < numAuxConstraints; ++auxEqIdx) {
unsigned rowIdx = numComponents*(numPhases - 1) + presentPhases + auxEqIdx;
b[rowIdx] = auxConstraints[auxEqIdx].value();
unsigned colIdx = auxConstraints[auxEqIdx].phaseIdx()*numComponents + auxConstraints[auxEqIdx].compIdx();
M[rowIdx][colIdx] = 1.0;
}
// solve for all mole fractions
try {
Dune::FMatrixPrecision<Scalar>::set_singular_limit(1e-50);
M.solve(x, b);
}
catch (const Dune::FMatrixError &e) {
//.........这里部分代码省略.........