本文整理汇总了C++中FluidState::allowTemperature方法的典型用法代码示例。如果您正苦于以下问题:C++ FluidState::allowTemperature方法的具体用法?C++ FluidState::allowTemperature怎么用?C++ FluidState::allowTemperature使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类FluidState
的用法示例。
在下文中一共展示了FluidState::allowTemperature方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: checkFluidSystem
void checkFluidSystem()
{
std::cout << "Testing fluid system '" << Dune::className<FluidSystem>() << "'\n";
// make sure the fluid system provides the number of phases and
// the number of components
enum { numPhases = FluidSystem::numPhases };
enum { numComponents = FluidSystem::numComponents };
typedef HairSplittingFluidState<RhsEval, FluidSystem> FluidState;
FluidState fs;
fs.allowTemperature(true);
fs.allowPressure(true);
fs.allowComposition(true);
fs.restrictToPhase(-1);
// initialize memory the fluid state
fs.base().setTemperature(273.15 + 20.0);
for (int phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
fs.base().setPressure(phaseIdx, 1e5);
fs.base().setSaturation(phaseIdx, 1.0/numPhases);
for (int compIdx = 0; compIdx < numComponents; ++ compIdx) {
fs.base().setMoleFraction(phaseIdx, compIdx, 1.0/numComponents);
}
}
static_assert(std::is_same<typename FluidSystem::Scalar, Scalar>::value,
"The type used for floating point used by the fluid system must be the same"
" as the one passed to the checkFluidSystem() function");
// check whether the parameter cache adheres to the API
typedef typename FluidSystem::template ParameterCache<LhsEval> ParameterCache;
ParameterCache paramCache;
try { paramCache.updateAll(fs); } catch (...) {};
try { paramCache.updateAll(fs, /*except=*/ParameterCache::None); } catch (...) {};
try { paramCache.updateAll(fs, /*except=*/ParameterCache::Temperature | ParameterCache::Pressure | ParameterCache::Composition); } catch (...) {};
try { paramCache.updateAllPressures(fs); } catch (...) {};
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
fs.restrictToPhase(static_cast<int>(phaseIdx));
try { paramCache.updatePhase(fs, phaseIdx); } catch (...) {};
try { paramCache.updatePhase(fs, phaseIdx, /*except=*/ParameterCache::None); } catch (...) {};
try { paramCache.updatePhase(fs, phaseIdx, /*except=*/ParameterCache::Temperature | ParameterCache::Pressure | ParameterCache::Composition); } catch (...) {};
try { paramCache.updateTemperature(fs, phaseIdx); } catch (...) {};
try { paramCache.updatePressure(fs, phaseIdx); } catch (...) {};
try { paramCache.updateComposition(fs, phaseIdx); } catch (...) {};
try { paramCache.updateSingleMoleFraction(fs, phaseIdx, /*compIdx=*/0); } catch (...) {};
}
// some value to make sure the return values of the fluid system
// are convertible to scalars
LhsEval val = 0.0;
Scalar scalarVal = 0.0;
scalarVal = 2*scalarVal; // get rid of GCC warning (only occurs with paranoid warning flags)
val = 2*val; // get rid of GCC warning (only occurs with paranoid warning flags)
// actually check the fluid system API
try { FluidSystem::init(); } catch (...) {};
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
fs.restrictToPhase(static_cast<int>(phaseIdx));
fs.allowPressure(FluidSystem::isCompressible(phaseIdx));
fs.allowComposition(true);
fs.allowDensity(false);
try { auto tmpVal OPM_UNUSED = FluidSystem::density(fs, paramCache, phaseIdx); static_assert(std::is_same<decltype(tmpVal), RhsEval>::value, "The default return value must be the scalar used by the fluid state!"); } catch (...) {};
try { val = FluidSystem::template density<FluidState, LhsEval>(fs, paramCache, phaseIdx); } catch (...) {};
try { scalarVal = FluidSystem::template density<FluidState, Scalar>(fs, paramCache, phaseIdx); } catch (...) {};
fs.allowPressure(true);
fs.allowDensity(true);
try { auto tmpVal OPM_UNUSED = FluidSystem::viscosity(fs, paramCache, phaseIdx); static_assert(std::is_same<decltype(tmpVal), RhsEval>::value, "The default return value must be the scalar used by the fluid state!"); } catch (...) {};
try { auto tmpVal OPM_UNUSED = FluidSystem::enthalpy(fs, paramCache, phaseIdx); static_assert(std::is_same<decltype(tmpVal), RhsEval>::value, "The default return value must be the scalar used by the fluid state!"); } catch (...) {};
try { auto tmpVal OPM_UNUSED = FluidSystem::heatCapacity(fs, paramCache, phaseIdx); static_assert(std::is_same<decltype(tmpVal), RhsEval>::value, "The default return value must be the scalar used by the fluid state!"); } catch (...) {};
try { auto tmpVal OPM_UNUSED= FluidSystem::thermalConductivity(fs, paramCache, phaseIdx); static_assert(std::is_same<decltype(tmpVal), RhsEval>::value, "The default return value must be the scalar used by the fluid state!"); } catch (...) {};
try { val = FluidSystem::template viscosity<FluidState, LhsEval>(fs, paramCache, phaseIdx); } catch (...) {};
try { val = FluidSystem::template enthalpy<FluidState, LhsEval>(fs, paramCache, phaseIdx); } catch (...) {};
try { val = FluidSystem::template heatCapacity<FluidState, LhsEval>(fs, paramCache, phaseIdx); } catch (...) {};
try { val = FluidSystem::template thermalConductivity<FluidState, LhsEval>(fs, paramCache, phaseIdx); } catch (...) {};
try { scalarVal = FluidSystem::template viscosity<FluidState, Scalar>(fs, paramCache, phaseIdx); } catch (...) {};
try { scalarVal = FluidSystem::template enthalpy<FluidState, Scalar>(fs, paramCache, phaseIdx); } catch (...) {};
try { scalarVal = FluidSystem::template heatCapacity<FluidState, Scalar>(fs, paramCache, phaseIdx); } catch (...) {};
try { scalarVal = FluidSystem::template thermalConductivity<FluidState, Scalar>(fs, paramCache, phaseIdx); } catch (...) {};
for (unsigned compIdx = 0; compIdx < numComponents; ++ compIdx) {
fs.allowComposition(!FluidSystem::isIdealMixture(phaseIdx));
try { auto tmpVal OPM_UNUSED = FluidSystem::fugacityCoefficient(fs, paramCache, phaseIdx, compIdx); static_assert(std::is_same<decltype(tmpVal), RhsEval>::value, "The default return value must be the scalar used by the fluid state!"); } catch (...) {};
try { val = FluidSystem::template fugacityCoefficient<FluidState, LhsEval>(fs, paramCache, phaseIdx, compIdx); } catch (...) {};
try { scalarVal = FluidSystem::template fugacityCoefficient<FluidState, Scalar>(fs, paramCache, phaseIdx, compIdx); } catch (...) {};
fs.allowComposition(true);
try { auto tmpVal OPM_UNUSED = FluidSystem::diffusionCoefficient(fs, paramCache, phaseIdx, compIdx); static_assert(std::is_same<decltype(tmpVal), RhsEval>::value, "The default return value must be the scalar used by the fluid state!"); } catch (...) {};
try { val = FluidSystem::template diffusionCoefficient<FluidState, LhsEval>(fs, paramCache, phaseIdx, compIdx); } catch (...) {};
try { scalarVal = FluidSystem::template fugacityCoefficient<FluidState, Scalar>(fs, paramCache, phaseIdx, compIdx); } catch (...) {};
}
}
// test for phaseName(), isLiquid() and isIdealGas()
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
std::string name OPM_UNUSED = FluidSystem::phaseName(phaseIdx);
bool bVal = FluidSystem::isLiquid(phaseIdx);
//.........这里部分代码省略.........