当前位置: 首页>>代码示例>>C++>>正文


C++ Epetra_RowMatrix::OperatorDomainMap方法代码示例

本文整理汇总了C++中Epetra_RowMatrix::OperatorDomainMap方法的典型用法代码示例。如果您正苦于以下问题:C++ Epetra_RowMatrix::OperatorDomainMap方法的具体用法?C++ Epetra_RowMatrix::OperatorDomainMap怎么用?C++ Epetra_RowMatrix::OperatorDomainMap使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Epetra_RowMatrix的用法示例。


在下文中一共展示了Epetra_RowMatrix::OperatorDomainMap方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: Test

void Test(const string what, Epetra_RowMatrix& A)
{
  T Prec(&A);

  bool UseTranspose = true;

  IFPACK_CHK_ERRV(Prec.Initialize());
  IFPACK_CHK_ERRV(Prec.Compute());
  IFPACK_CHK_ERRV(Prec.SetUseTranspose(UseTranspose));

  Epetra_MultiVector LHS_exact(A.OperatorDomainMap(), 2);
  Epetra_MultiVector LHS(A.OperatorDomainMap(), 2);
  Epetra_MultiVector RHS(A.OperatorRangeMap(), 2);

  LHS_exact.Random(); LHS.PutScalar(0.0);

  A.Multiply(UseTranspose, LHS_exact, RHS);

  Prec.ApplyInverse(RHS, LHS);

  LHS.Update(1.0, LHS_exact, -1.0);
  double norm[2];

  LHS.Norm2(norm);
  norm[0] += norm[1];

  if (norm[0] > 1e-5)
  {
    cout << what << ": Test failed: norm = " << norm[0] << endl;
    exit(EXIT_FAILURE);
  }

  cout << what << ": Test passed: norm = " << norm[0] << endl;
}
开发者ID:cakeisalie,项目名称:oomphlib_003,代码行数:34,代码来源:cxx_main.cpp

示例2: RowMatrixToHandle

int RowMatrixToHandle(FILE * handle, const Epetra_RowMatrix & A) {

  Epetra_Map map = A.RowMatrixRowMap();
  const Epetra_Comm & comm = map.Comm();
  int numProc = comm.NumProc();

  if (numProc==1 || !A.Map().DistributedGlobal())
    writeRowMatrix(handle, A);
  else {
    int numRows = map.NumMyElements();
    
    Epetra_Map allGidsMap((int_type) -1, numRows, (int_type) 0,comm);
    
    typename Epetra_GIDTypeVector<int_type>::impl allGids(allGidsMap);
    for (int i=0; i<numRows; i++) allGids[i] = (int_type) map.GID64(i);
    
    // Now construct a RowMatrix on PE 0 by strip-mining the rows of the input matrix A.
    int numChunks = numProc;
    int stripSize = allGids.GlobalLength64()/numChunks;
    int remainder = allGids.GlobalLength64()%numChunks;
    int curStart = 0;
    int curStripSize = 0;
    typename Epetra_GIDTypeSerialDenseVector<int_type>::impl importGidList;
    if (comm.MyPID()==0) 
      importGidList.Size(stripSize+1); // Set size of vector to max needed
    for (int i=0; i<numChunks; i++) {
      if (comm.MyPID()==0) { // Only PE 0 does this part
	curStripSize = stripSize;
	if (i<remainder) curStripSize++; // handle leftovers
	for (int j=0; j<curStripSize; j++) importGidList[j] = j + curStart;
	curStart += curStripSize;
      }
      // The following import map will be non-trivial only on PE 0.
      if (comm.MyPID()>0) assert(curStripSize==0);
      Epetra_Map importGidMap(-1, curStripSize, importGidList.Values(), 0, comm);
      Epetra_Import gidImporter(importGidMap, allGidsMap);
      typename Epetra_GIDTypeVector<int_type>::impl importGids(importGidMap);
      if (importGids.Import(allGids, gidImporter, Insert)!=0) {EPETRA_CHK_ERR(-1); }

      // importGids now has a list of GIDs for the current strip of matrix rows.
      // Use these values to build another importer that will get rows of the matrix.

      // The following import map will be non-trivial only on PE 0.
      Epetra_Map importMap(-1, importGids.MyLength(), importGids.Values(), map.IndexBase64(), comm);
      Epetra_Import importer(importMap, map);
      Epetra_CrsMatrix importA(Copy, importMap, 0);
      if (importA.Import(A, importer, Insert)!=0) {EPETRA_CHK_ERR(-1); }
      if (importA.FillComplete(A.OperatorDomainMap(), importMap)!=0) {EPETRA_CHK_ERR(-1);}

      // Finally we are ready to write this strip of the matrix to ostream
      if (writeRowMatrix(handle, importA)!=0) {EPETRA_CHK_ERR(-1);}
    }
  }
  return(0);
}
开发者ID:00liujj,项目名称:trilinos,代码行数:55,代码来源:EpetraExt_RowMatrixOut.cpp

示例3: check

int check(Epetra_RowMatrix& A, Epetra_RowMatrix & B, bool verbose)  {

  int ierr = 0;
  EPETRA_TEST_ERR(!A.Comm().NumProc()==B.Comm().NumProc(),ierr);
  EPETRA_TEST_ERR(!A.Comm().MyPID()==B.Comm().MyPID(),ierr);
  EPETRA_TEST_ERR(!A.Filled()==B.Filled(),ierr);
  EPETRA_TEST_ERR(!A.HasNormInf()==B.HasNormInf(),ierr);
  EPETRA_TEST_ERR(!A.LowerTriangular()==B.LowerTriangular(),ierr);
  EPETRA_TEST_ERR(!A.Map().SameAs(B.Map()),ierr);
  EPETRA_TEST_ERR(!A.MaxNumEntries()==B.MaxNumEntries(),ierr);
  EPETRA_TEST_ERR(!A.NumGlobalCols64()==B.NumGlobalCols64(),ierr);
  EPETRA_TEST_ERR(!A.NumGlobalDiagonals64()==B.NumGlobalDiagonals64(),ierr);
  EPETRA_TEST_ERR(!A.NumGlobalNonzeros64()==B.NumGlobalNonzeros64(),ierr);
  EPETRA_TEST_ERR(!A.NumGlobalRows64()==B.NumGlobalRows64(),ierr);
  EPETRA_TEST_ERR(!A.NumMyCols()==B.NumMyCols(),ierr);
  EPETRA_TEST_ERR(!A.NumMyDiagonals()==B.NumMyDiagonals(),ierr);
  EPETRA_TEST_ERR(!A.NumMyNonzeros()==B.NumMyNonzeros(),ierr);
  for (int i=0; i<A.NumMyRows(); i++) {
    int nA, nB;
    A.NumMyRowEntries(i,nA); B.NumMyRowEntries(i,nB);
    EPETRA_TEST_ERR(!nA==nB,ierr);
  }
  EPETRA_TEST_ERR(!A.NumMyRows()==B.NumMyRows(),ierr);
  EPETRA_TEST_ERR(!A.OperatorDomainMap().SameAs(B.OperatorDomainMap()),ierr);
  EPETRA_TEST_ERR(!A.OperatorRangeMap().SameAs(B.OperatorRangeMap()),ierr);
  EPETRA_TEST_ERR(!A.RowMatrixColMap().SameAs(B.RowMatrixColMap()),ierr);
  EPETRA_TEST_ERR(!A.RowMatrixRowMap().SameAs(B.RowMatrixRowMap()),ierr);
  EPETRA_TEST_ERR(!A.UpperTriangular()==B.UpperTriangular(),ierr);
  EPETRA_TEST_ERR(!A.UseTranspose()==B.UseTranspose(),ierr);

  int NumVectors = 5;
  { // No transpose case
    Epetra_MultiVector X(A.OperatorDomainMap(), NumVectors);
    Epetra_MultiVector YA1(A.OperatorRangeMap(), NumVectors);
    Epetra_MultiVector YA2(YA1);
    Epetra_MultiVector YB1(YA1);
    Epetra_MultiVector YB2(YA1);
    X.Random();

    bool transA = false;
    A.SetUseTranspose(transA);
    B.SetUseTranspose(transA);
    A.Apply(X,YA1);
    A.Multiply(transA, X, YA2);
    EPETRA_TEST_ERR(checkMultiVectors(YA1,YA2,"A Multiply and A Apply", verbose),ierr);
    B.Apply(X,YB1);
    EPETRA_TEST_ERR(checkMultiVectors(YA1,YB1,"A Multiply and B Multiply", verbose),ierr);
    B.Multiply(transA, X, YB2);
    EPETRA_TEST_ERR(checkMultiVectors(YA1,YB2,"A Multiply and B Apply", verbose), ierr);

  }
  {// transpose case
    Epetra_MultiVector X(A.OperatorRangeMap(), NumVectors);
    Epetra_MultiVector YA1(A.OperatorDomainMap(), NumVectors);
    Epetra_MultiVector YA2(YA1);
    Epetra_MultiVector YB1(YA1);
    Epetra_MultiVector YB2(YA1);
    X.Random();

    bool transA = true;
    A.SetUseTranspose(transA);
    B.SetUseTranspose(transA);
    A.Apply(X,YA1);
    A.Multiply(transA, X, YA2);
    EPETRA_TEST_ERR(checkMultiVectors(YA1,YA2, "A Multiply and A Apply (transpose)", verbose),ierr);
    B.Apply(X,YB1);
    EPETRA_TEST_ERR(checkMultiVectors(YA1,YB1, "A Multiply and B Multiply (transpose)", verbose),ierr);
    B.Multiply(transA, X,YB2);
    EPETRA_TEST_ERR(checkMultiVectors(YA1,YB2, "A Multiply and B Apply (transpose)", verbose),ierr);

  }

  Epetra_Vector diagA(A.RowMatrixRowMap());
  EPETRA_TEST_ERR(A.ExtractDiagonalCopy(diagA),ierr);
  Epetra_Vector diagB(B.RowMatrixRowMap());
  EPETRA_TEST_ERR(B.ExtractDiagonalCopy(diagB),ierr);
  EPETRA_TEST_ERR(checkMultiVectors(diagA,diagB, "ExtractDiagonalCopy", verbose),ierr);

  Epetra_Vector rowA(A.RowMatrixRowMap());
  EPETRA_TEST_ERR(A.InvRowSums(rowA),ierr);
  Epetra_Vector rowB(B.RowMatrixRowMap());
  EPETRA_TEST_ERR(B.InvRowSums(rowB),ierr)
  EPETRA_TEST_ERR(checkMultiVectors(rowA,rowB, "InvRowSums", verbose),ierr);

  Epetra_Vector colA(A.RowMatrixColMap());
  EPETRA_TEST_ERR(A.InvColSums(colA),ierr);
  Epetra_Vector colB(B.RowMatrixColMap());
  EPETRA_TEST_ERR(B.InvColSums(colB),ierr);
  EPETRA_TEST_ERR(checkMultiVectors(colA,colB, "InvColSums", verbose),ierr);

  EPETRA_TEST_ERR(checkValues(A.NormInf(), B.NormInf(), "NormInf before scaling", verbose), ierr);
  EPETRA_TEST_ERR(checkValues(A.NormOne(), B.NormOne(), "NormOne before scaling", verbose),ierr);

  EPETRA_TEST_ERR(A.RightScale(colA),ierr);
  EPETRA_TEST_ERR(B.RightScale(colB),ierr);


  EPETRA_TEST_ERR(A.LeftScale(rowA),ierr);
  EPETRA_TEST_ERR(B.LeftScale(rowB),ierr);

//.........这里部分代码省略.........
开发者ID:00liujj,项目名称:trilinos,代码行数:101,代码来源:cxx_main.cpp


注:本文中的Epetra_RowMatrix::OperatorDomainMap方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。