本文整理汇总了C++中Epetra_RowMatrix::NumGlobalCols方法的典型用法代码示例。如果您正苦于以下问题:C++ Epetra_RowMatrix::NumGlobalCols方法的具体用法?C++ Epetra_RowMatrix::NumGlobalCols怎么用?C++ Epetra_RowMatrix::NumGlobalCols使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Epetra_RowMatrix
的用法示例。
在下文中一共展示了Epetra_RowMatrix::NumGlobalCols方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: show_matrix
void show_matrix(const char *txt, const Epetra_RowMatrix &matrix, const Epetra_Comm &comm)
{
int me = comm.MyPID();
if (comm.NumProc() > 10){
if (me == 0){
std::cout << txt << std::endl;
std::cout << "Printed matrix format only works for 10 or fewer processes" << std::endl;
}
return;
}
int numRows = matrix.NumGlobalRows();
int numCols = matrix.NumGlobalCols();
if ((numRows > 200) || (numCols > 500)){
if (me == 0){
std::cerr << txt << std::endl;
std::cerr << "show_matrix: problem is too large to display" << std::endl;
}
return;
}
int *myA = new int [numRows * numCols];
make_my_A(matrix, myA, comm);
printMatrix(txt, myA, NULL, NULL, numRows, numCols, comm);
delete [] myA;
}
示例2: make_my_A
static int make_my_A(const Epetra_RowMatrix &matrix, int *myA, const Epetra_Comm &comm)
{
int me = comm.MyPID();
const Epetra_Map &rowmap = matrix.RowMatrixRowMap();
const Epetra_Map &colmap = matrix.RowMatrixColMap();
int myRows = matrix.NumMyRows();
int numRows = matrix.NumGlobalRows();
int numCols = matrix.NumGlobalCols();
int base = rowmap.IndexBase();
int maxRow = matrix.MaxNumEntries();
memset(myA, 0, sizeof(int) * numRows * numCols);
int *myIndices = new int [maxRow];
double *tmp = new double [maxRow];
int rowLen = 0;
for (int i=0; i< myRows; i++){
int rc = matrix.ExtractMyRowCopy(i, maxRow, rowLen, tmp, myIndices);
if (rc){
if (me == 0){
std::cout << "Error in make_my_A" << std::endl;
}
return 1;
}
int *row = myA + (numCols * (rowmap.GID(i) - base));
for (int j=0; j < rowLen; j++){
int colGID = colmap.GID(myIndices[j]);
row[colGID - base] = me + 1;
}
}
if (maxRow){
delete [] myIndices;
delete [] tmp;
}
return 0;
}
示例3: compute_hypergraph_metrics
int compute_hypergraph_metrics(const Epetra_RowMatrix &matrix,
Isorropia::Epetra::CostDescriber &costs,
double &myGoalWeight,
double &balance, double &cutn, double &cutl) // output
{
const Epetra_BlockMap &rmap =
static_cast<const Epetra_BlockMap &>(matrix.RowMatrixRowMap());
const Epetra_BlockMap &cmap =
static_cast<const Epetra_BlockMap &>(matrix.RowMatrixColMap());
return compute_hypergraph_metrics(rmap, cmap,
matrix.NumGlobalCols(),
costs,
myGoalWeight,
balance, cutn, cutl);
}
示例4: Solve
//=============================================================================
int Amesos_Dscpack::Solve()
{
if (IsNumericFactorizationOK_ == false)
AMESOS_CHK_ERR(NumericFactorization());
ResetTimer(0);
ResetTimer(1);
Epetra_RowMatrix *RowMatrixA = Problem_->GetMatrix();
if (RowMatrixA == 0)
AMESOS_CHK_ERR(-1);
// MS // some checks on matrix size
if (RowMatrixA->NumGlobalRows() != RowMatrixA->NumGlobalCols())
AMESOS_CHK_ERR(-1);
// Convert vector b to a vector in the form that DSCPACK needs it
//
Epetra_MultiVector* vecX = Problem_->GetLHS();
Epetra_MultiVector* vecB = Problem_->GetRHS();
if ((vecX == 0) || (vecB == 0))
AMESOS_CHK_ERR(-1); // something wrong with input
int NumVectors = vecX->NumVectors();
if (NumVectors != vecB->NumVectors())
AMESOS_CHK_ERR(-2);
double *dscmapXvalues ;
int dscmapXlda ;
Epetra_MultiVector dscmapX(DscRowMap(),NumVectors) ;
int ierr;
AMESOS_CHK_ERR(dscmapX.ExtractView(&dscmapXvalues,&dscmapXlda));
assert (dscmapXlda == NumLocalCols);
double *dscmapBvalues ;
int dscmapBlda ;
Epetra_MultiVector dscmapB(DscRowMap(), NumVectors ) ;
ierr = dscmapB.ExtractView( &dscmapBvalues, &dscmapBlda );
AMESOS_CHK_ERR(ierr);
assert( dscmapBlda == NumLocalCols ) ;
AMESOS_CHK_ERR(dscmapB.Import(*vecB, Importer(), Insert));
VecRedistTime_ = AddTime("Total vector redistribution time", VecRedistTime_, 0);
ResetTimer(0);
// MS // now solve the problem
std::vector<double> ValuesInNewOrder( NumLocalCols ) ;
OverheadTime_ = AddTime("Total Amesos overhead time", OverheadTime_, 1);
if ( MyDscRank >= 0 ) {
for ( int j =0 ; j < NumVectors; j++ ) {
for ( int i = 0; i < NumLocalCols; i++ ) {
ValuesInNewOrder[i] = dscmapBvalues[DscColMap().LID( LocalStructOldNum[i] ) +j*dscmapBlda ] ;
}
AMESOS_CHK_ERR( DSC_InputRhsLocalVec ( PrivateDscpackData_->MyDSCObject_, &ValuesInNewOrder[0], NumLocalCols ) ) ;
AMESOS_CHK_ERR( DSC_Solve ( PrivateDscpackData_->MyDSCObject_ ) ) ;
AMESOS_CHK_ERR( DSC_GetLocalSolution ( PrivateDscpackData_->MyDSCObject_, &ValuesInNewOrder[0], NumLocalCols ) ) ;
for ( int i = 0; i < NumLocalCols; i++ ) {
dscmapXvalues[DscColMap().LID( LocalStructOldNum[i] ) +j*dscmapXlda ] = ValuesInNewOrder[i];
}
}
}
SolveTime_ = AddTime("Total solve time", SolveTime_, 0);
ResetTimer(0);
ResetTimer(1);
vecX->Export( dscmapX, Importer(), Insert ) ;
VecRedistTime_ = AddTime("Total vector redistribution time", VecRedistTime_, 0);
if (ComputeTrueResidual_)
ComputeTrueResidual(*(GetProblem()->GetMatrix()), *vecX, *vecB,
false, "Amesos_Dscpack");
if (ComputeVectorNorms_)
ComputeVectorNorms(*vecX, *vecB, "Amesos_Dscpack");
OverheadTime_ = AddTime("Total Amesos overhead time", OverheadTime_, 1);
NumSolve_++;
return(0) ;
}
示例5: PerformNumericFactorization
//=============================================================================
int Amesos_Dscpack::PerformNumericFactorization()
{
ResetTimer(0);
ResetTimer(1);
Epetra_RowMatrix* RowMatrixA = Problem_->GetMatrix();
if (RowMatrixA == 0)
AMESOS_CHK_ERR(-1);
const Epetra_Map& OriginalMap = RowMatrixA->RowMatrixRowMap() ;
int numrows = RowMatrixA->NumGlobalRows();
assert( numrows == RowMatrixA->NumGlobalCols() );
//
// Call Dscpack to perform Numeric Factorization
//
std::vector<double> MyANonZ;
#if 0
if ( IsNumericFactorizationOK_ ) {
DSC_ReFactorInitialize(PrivateDscpackData_->MyDSCObject);
}
#endif
DscRowMap_ = Teuchos::rcp(new Epetra_Map(numrows, NumLocalCols,
LocalStructOldNum, 0, Comm()));
if (DscRowMap_.get() == 0)
AMESOS_CHK_ERR(-1);
Importer_ = rcp(new Epetra_Import(DscRowMap(), OriginalMap));
//
// Import from the CrsMatrix
//
Epetra_CrsMatrix DscMat(Copy, DscRowMap(), 0);
AMESOS_CHK_ERR(DscMat.Import(*RowMatrixA, Importer(), Insert));
AMESOS_CHK_ERR(DscMat.FillComplete());
DscColMap_ = Teuchos::rcp(new Epetra_Map(DscMat.RowMatrixColMap()));
assert( MyDscRank >= 0 || NumLocalNonz == 0 ) ;
assert( MyDscRank >= 0 || NumLocalCols == 0 ) ;
assert( MyDscRank >= 0 || NumGlobalCols == 0 ) ;
MyANonZ.resize( NumLocalNonz ) ;
int NonZIndex = 0 ;
int max_num_entries = DscMat.MaxNumEntries() ;
std::vector<int> col_indices( max_num_entries ) ;
std::vector<double> mat_values( max_num_entries ) ;
assert( NumLocalCols == DscRowMap().NumMyElements() ) ;
std::vector<int> my_global_elements( NumLocalCols ) ;
AMESOS_CHK_ERR(DscRowMap().MyGlobalElements( &my_global_elements[0] ) ) ;
std::vector<int> GlobalStructOldColNum( NumGlobalCols ) ;
typedef std::pair<int, double> Data;
std::vector<Data> sort_array(max_num_entries);
std::vector<int> sort_indices(max_num_entries);
for ( int i = 0; i < NumLocalCols ; i++ ) {
assert( my_global_elements[i] == LocalStructOldNum[i] ) ;
int num_entries_this_row;
#ifdef USE_LOCAL
AMESOS_CHK_ERR( DscMat.ExtractMyRowCopy( i, max_num_entries, num_entries_this_row,
&mat_values[0], &col_indices[0] ) ) ;
#else
AMESOS_CHK_ERR( DscMat.ExtractGlobalRowCopy( DscMat.GRID(i), max_num_entries, num_entries_this_row,
&mat_values[0], &col_indices[0] ) ) ;
#endif
int OldRowNumber = LocalStructOldNum[i] ;
if (GlobalStructOwner[ OldRowNumber ] == -1)
AMESOS_CHK_ERR(-1);
int NewRowNumber = GlobalStructNewColNum[ my_global_elements[ i ] ] ;
//
// Sort the column elements
//
for ( int j = 0; j < num_entries_this_row; j++ ) {
#ifdef USE_LOCAL
sort_array[j].first = GlobalStructNewColNum[ DscMat.GCID( col_indices[j])] ;
sort_indices[j] = GlobalStructNewColNum[ DscMat.GCID( col_indices[j])] ;
#else
sort_array[j].first = GlobalStructNewColNum[ col_indices[j] ];
#endif
sort_array[j].second = mat_values[j] ;
}
sort(&sort_array[0], &sort_array[num_entries_this_row]);
for ( int j = 0; j < num_entries_this_row; j++ ) {
int NewColNumber = sort_array[j].first ;
if ( NewRowNumber <= NewColNumber ) MyANonZ[ NonZIndex++ ] = sort_array[j].second ;
#ifndef USE_LOCAL
assert( NonZIndex <= NumLocalNonz ); // This assert can fail on non-symmetric matrices
#endif
}
//.........这里部分代码省略.........
示例6: check
int check(Epetra_RowMatrix& A, Epetra_RowMatrix & B, bool verbose) {
int ierr = 0;
EPETRA_TEST_ERR(!A.Comm().NumProc()==B.Comm().NumProc(),ierr);
EPETRA_TEST_ERR(!A.Comm().MyPID()==B.Comm().MyPID(),ierr);
EPETRA_TEST_ERR(!A.Filled()==B.Filled(),ierr);
EPETRA_TEST_ERR(!A.HasNormInf()==B.HasNormInf(),ierr);
EPETRA_TEST_ERR(!A.LowerTriangular()==B.LowerTriangular(),ierr);
EPETRA_TEST_ERR(!A.Map().SameAs(B.Map()),ierr);
EPETRA_TEST_ERR(!A.MaxNumEntries()==B.MaxNumEntries(),ierr);
EPETRA_TEST_ERR(!A.NumGlobalCols()==B.NumGlobalCols(),ierr);
EPETRA_TEST_ERR(!A.NumGlobalDiagonals()==B.NumGlobalDiagonals(),ierr);
EPETRA_TEST_ERR(!A.NumGlobalNonzeros()==B.NumGlobalNonzeros(),ierr);
EPETRA_TEST_ERR(!A.NumGlobalRows()==B.NumGlobalRows(),ierr);
EPETRA_TEST_ERR(!A.NumMyCols()==B.NumMyCols(),ierr);
EPETRA_TEST_ERR(!A.NumMyDiagonals()==B.NumMyDiagonals(),ierr);
EPETRA_TEST_ERR(!A.NumMyNonzeros()==B.NumMyNonzeros(),ierr);
for (int i=0; i<A.NumMyRows(); i++) {
int nA, nB;
A.NumMyRowEntries(i,nA);
B.NumMyRowEntries(i,nB);
EPETRA_TEST_ERR(!nA==nB,ierr);
}
EPETRA_TEST_ERR(!A.NumMyRows()==B.NumMyRows(),ierr);
EPETRA_TEST_ERR(!A.OperatorDomainMap().SameAs(B.OperatorDomainMap()),ierr);
EPETRA_TEST_ERR(!A.OperatorRangeMap().SameAs(B.OperatorRangeMap()),ierr);
EPETRA_TEST_ERR(!A.RowMatrixColMap().SameAs(B.RowMatrixColMap()),ierr);
EPETRA_TEST_ERR(!A.RowMatrixRowMap().SameAs(B.RowMatrixRowMap()),ierr);
EPETRA_TEST_ERR(!A.UpperTriangular()==B.UpperTriangular(),ierr);
EPETRA_TEST_ERR(!A.UseTranspose()==B.UseTranspose(),ierr);
int NumVectors = 5;
{ // No transpose case
Epetra_MultiVector X(A.OperatorDomainMap(), NumVectors);
Epetra_MultiVector YA1(A.OperatorRangeMap(), NumVectors);
Epetra_MultiVector YA2(YA1);
Epetra_MultiVector YB1(YA1);
Epetra_MultiVector YB2(YA1);
X.Random();
bool transA = false;
A.SetUseTranspose(transA);
B.SetUseTranspose(transA);
A.Apply(X,YA1);
A.Multiply(transA, X, YA2);
EPETRA_TEST_ERR(checkMultiVectors(YA1,YA2,"A Multiply and A Apply", verbose),ierr);
B.Apply(X,YB1);
EPETRA_TEST_ERR(checkMultiVectors(YA1,YB1,"A Multiply and B Multiply", verbose),ierr);
B.Multiply(transA, X, YB2);
EPETRA_TEST_ERR(checkMultiVectors(YA1,YB2,"A Multiply and B Apply", verbose), ierr);
}
{ // transpose case
Epetra_MultiVector X(A.OperatorRangeMap(), NumVectors);
Epetra_MultiVector YA1(A.OperatorDomainMap(), NumVectors);
Epetra_MultiVector YA2(YA1);
Epetra_MultiVector YB1(YA1);
Epetra_MultiVector YB2(YA1);
X.Random();
bool transA = true;
A.SetUseTranspose(transA);
B.SetUseTranspose(transA);
A.Apply(X,YA1);
A.Multiply(transA, X, YA2);
EPETRA_TEST_ERR(checkMultiVectors(YA1,YA2, "A Multiply and A Apply (transpose)", verbose),ierr);
B.Apply(X,YB1);
EPETRA_TEST_ERR(checkMultiVectors(YA1,YB1, "A Multiply and B Multiply (transpose)", verbose),ierr);
B.Multiply(transA, X,YB2);
EPETRA_TEST_ERR(checkMultiVectors(YA1,YB2, "A Multiply and B Apply (transpose)", verbose),ierr);
}
Epetra_Vector diagA(A.RowMatrixRowMap());
EPETRA_TEST_ERR(A.ExtractDiagonalCopy(diagA),ierr);
Epetra_Vector diagB(B.RowMatrixRowMap());
EPETRA_TEST_ERR(B.ExtractDiagonalCopy(diagB),ierr);
EPETRA_TEST_ERR(checkMultiVectors(diagA,diagB, "ExtractDiagonalCopy", verbose),ierr);
Epetra_Vector rowA(A.RowMatrixRowMap());
EPETRA_TEST_ERR(A.InvRowSums(rowA),ierr);
Epetra_Vector rowB(B.RowMatrixRowMap());
EPETRA_TEST_ERR(B.InvRowSums(rowB),ierr)
EPETRA_TEST_ERR(checkMultiVectors(rowA,rowB, "InvRowSums", verbose),ierr);
Epetra_Vector colA(A.RowMatrixColMap());
EPETRA_TEST_ERR(A.InvColSums(colA),ierr);
Epetra_Vector colB(B.RowMatrixColMap());
EPETRA_TEST_ERR(B.InvColSums(colB),ierr);
EPETRA_TEST_ERR(checkMultiVectors(colA,colB, "InvColSums", verbose),ierr);
EPETRA_TEST_ERR(checkValues(A.NormInf(), B.NormInf(), "NormInf before scaling", verbose), ierr);
EPETRA_TEST_ERR(checkValues(A.NormOne(), B.NormOne(), "NormOne before scaling", verbose),ierr);
EPETRA_TEST_ERR(A.RightScale(colA),ierr);
EPETRA_TEST_ERR(B.RightScale(colB),ierr);
EPETRA_TEST_ERR(A.LeftScale(rowA),ierr);
EPETRA_TEST_ERR(B.LeftScale(rowB),ierr);
//.........这里部分代码省略.........
示例7: RedistributeA
int Amesos_Scalapack::RedistributeA( ) {
if( debug_ == 1 ) std::cout << "Entering `RedistributeA()'" << std::endl;
Time_->ResetStartTime();
Epetra_RowMatrix *RowMatrixA = dynamic_cast<Epetra_RowMatrix *>(Problem_->GetOperator());
EPETRA_CHK_ERR( RowMatrixA == 0 ) ;
const Epetra_Map &OriginalMap = RowMatrixA->RowMatrixRowMap() ;
int NumberOfProcesses = Comm().NumProc() ;
//
// Compute a uniform distribution as ScaLAPACK would want it
// MyFirstElement - The first element which this processor would have
// NumExpectedElemetns - The number of elements which this processor would have
//
int NumRows_ = RowMatrixA->NumGlobalRows() ;
int NumColumns_ = RowMatrixA->NumGlobalCols() ;
if ( MaxProcesses_ > 0 ) {
NumberOfProcesses = EPETRA_MIN( NumberOfProcesses, MaxProcesses_ ) ;
}
else {
int ProcessNumHeuristic = (1+NumRows_/200)*(1+NumRows_/200);
NumberOfProcesses = EPETRA_MIN( NumberOfProcesses, ProcessNumHeuristic );
}
if ( debug_ == 1) std::cout << "iam_ = " << iam_ << "Amesos_Scalapack.cpp:171" << std::endl;
//
// Create the ScaLAPACK data distribution.
// The TwoD data distribution is created in a completely different
// manner and is not transposed (whereas the SaLAPACK 1D data
// distribution was transposed)
//
if ( debug_ == 1) std::cout << "iam_ = " << iam_ << "Amesos_Scalapack.cpp:163" << std::endl;
Comm().Barrier();
if ( TwoD_distribution_ ) {
if ( debug_ == 1) std::cout << "iam_ = " << iam_ << "Amesos_Scalapack.cpp:166" << std::endl;
Comm().Barrier();
npcol_ = EPETRA_MIN( NumberOfProcesses,
EPETRA_MAX ( 2, (int) sqrt( NumberOfProcesses * 0.5 ) ) ) ;
nprow_ = NumberOfProcesses / npcol_ ;
//
// Create the map for FatA - our first intermediate matrix
//
int NumMyElements = RowMatrixA->RowMatrixRowMap().NumMyElements() ;
std::vector<int> MyGlobalElements( NumMyElements );
RowMatrixA->RowMatrixRowMap().MyGlobalElements( &MyGlobalElements[0] ) ;
int NumMyColumns = RowMatrixA->RowMatrixColMap().NumMyElements() ;
std::vector<int> MyGlobalColumns( NumMyColumns );
RowMatrixA->RowMatrixColMap().MyGlobalElements( &MyGlobalColumns[0] ) ;
if ( debug_ == 1) std::cout << "iam_ = " << iam_ << "Amesos_Scalapack.cpp:194" << std::endl;
std::vector<int> MyFatElements( NumMyElements * npcol_ );
for( int LocalRow=0; LocalRow<NumMyElements; LocalRow++ ) {
for (int i = 0 ; i < npcol_; i++ ){
MyFatElements[LocalRow*npcol_+i] = MyGlobalElements[LocalRow]*npcol_+i;
}
}
Epetra_Map FatInMap( npcol_*NumRows_, NumMyElements*npcol_,
&MyFatElements[0], 0, Comm() );
//
// Create FatIn, our first intermediate matrix
//
Epetra_CrsMatrix FatIn( Copy, FatInMap, 0 );
std::vector<std::vector<int> > FatColumnIndices(npcol_,std::vector<int>(1));
std::vector<std::vector<double> > FatMatrixValues(npcol_,std::vector<double>(1));
std::vector<int> FatRowPtrs(npcol_); // A FatRowPtrs[i] = the number
// of entries in local row LocalRow*npcol_ + i
if ( debug_ == 1) std::cout << "iam_ = " << iam_ << "Amesos_Scalapack.cpp:219" << std::endl;
//
mypcol_ = iam_%npcol_;
myprow_ = (iam_/npcol_)%nprow_;
if ( iam_ >= nprow_ * npcol_ ) {
myprow_ = nprow_;
mypcol_ = npcol_;
}
// Each row is split into npcol_ rows, with each of the
// new rows containing only those elements belonging to
// its process column (in the ScaLAPACK 2D process grid)
//
int MaxNumIndices = RowMatrixA->MaxNumEntries();
int NumIndices;
std::vector<int> ColumnIndices(MaxNumIndices);
std::vector<double> MatrixValues(MaxNumIndices);
if ( debug_ == 1) std::cout << "iam_ = " << iam_ << "Amesos_Scalapack.cpp:232 NumMyElements = "
<< NumMyElements
<< std::endl;
//.........这里部分代码省略.........