本文整理汇总了C++中Epetra_RowMatrix::Comm方法的典型用法代码示例。如果您正苦于以下问题:C++ Epetra_RowMatrix::Comm方法的具体用法?C++ Epetra_RowMatrix::Comm怎么用?C++ Epetra_RowMatrix::Comm使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Epetra_RowMatrix
的用法示例。
在下文中一共展示了Epetra_RowMatrix::Comm方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: GetGlobalAggregates
// ======================================================================
int GetGlobalAggregates(Epetra_RowMatrix& A, Teuchos::ParameterList& List,
double* thisns, Epetra_IntVector& aggrinfo)
{
int naggregates = GetAggregates(A,List,thisns,aggrinfo);
const Epetra_Comm& comm = A.Comm();
std::vector<int> local(comm.NumProc());
std::vector<int> global(comm.NumProc());
for (int i=0; i<comm.NumProc(); ++i) local[i] = 0;
local[comm.MyPID()] = naggregates;
comm.SumAll(&local[0],&global[0],comm.NumProc());
int offset = 0;
for (int i=0; i<comm.MyPID(); ++i) offset += global[i];
for (int i=0; i<aggrinfo.MyLength(); ++i)
if (aggrinfo[i]<naggregates) aggrinfo[i] += offset;
else aggrinfo[i] = -1;
return naggregates;
}
示例2: Ifpack_FrobeniusNorm
double Ifpack_FrobeniusNorm(const Epetra_RowMatrix& A)
{
double MyNorm = 0.0, GlobalNorm;
std::vector<int> colInd(A.MaxNumEntries());
std::vector<double> colVal(A.MaxNumEntries());
for (int i = 0 ; i < A.NumMyRows() ; ++i) {
int Nnz;
IFPACK_CHK_ERR(A.ExtractMyRowCopy(i,A.MaxNumEntries(),Nnz,
&colVal[0],&colInd[0]));
for (int j = 0 ; j < Nnz ; ++j) {
MyNorm += colVal[j] * colVal[j];
}
}
A.Comm().SumAll(&MyNorm,&GlobalNorm,1);
return(sqrt(GlobalNorm));
}
示例3: TestMultiLevelPreconditioner
int TestMultiLevelPreconditioner(char ProblemType[],
Teuchos::ParameterList & MLList,
Epetra_LinearProblem & Problem, double & TotalErrorResidual,
double & TotalErrorExactSol,bool cg=false)
{
Epetra_MultiVector* lhs = Problem.GetLHS();
Epetra_MultiVector* rhs = Problem.GetRHS();
Epetra_RowMatrix* A = Problem.GetMatrix();
// ======================================== //
// create a rhs corresponding to lhs or 1's //
// ======================================== //
lhs->PutScalar(1.0);
A->Multiply(false,*lhs,*rhs);
lhs->PutScalar(0.0);
Epetra_Time Time(A->Comm());
// =================== //
// call ML and AztecOO //
// =================== //
AztecOO solver(Problem);
MLList.set("ML output", 10);
ML_Epetra::MultiLevelPreconditioner * MLPrec = new ML_Epetra::MultiLevelPreconditioner(*A, MLList, true);
// tell AztecOO to use this preconditioner, then solve
solver.SetPrecOperator(MLPrec);
if(cg) solver.SetAztecOption(AZ_solver, AZ_cg);
else solver.SetAztecOption(AZ_solver, AZ_gmres);
solver.SetAztecOption(AZ_output, 32);
solver.SetAztecOption(AZ_kspace, 160);
solver.Iterate(1550, 1e-12);
delete MLPrec;
// ==================================================== //
// compute difference between exact solution and ML one //
// ==================================================== //
double d = 0.0, d_tot = 0.0;
for( int i=0 ; i<lhs->Map().NumMyElements() ; ++i )
d += ((*lhs)[0][i] - 1.0) * ((*lhs)[0][i] - 1.0);
A->Comm().SumAll(&d,&d_tot,1);
// ================== //
// compute ||Ax - b|| //
// ================== //
double Norm;
Epetra_Vector Ax(rhs->Map());
A->Multiply(false, *lhs, Ax);
Ax.Update(1.0, *rhs, -1.0);
Ax.Norm2(&Norm);
string msg = ProblemType;
if (A->Comm().MyPID() == 0) {
cout << msg << "......Using " << A->Comm().NumProc() << " processes" << endl;
cout << msg << "......||A x - b||_2 = " << Norm << endl;
cout << msg << "......||x_exact - x||_2 = " << sqrt(d_tot) << endl;
cout << msg << "......Total Time = " << Time.ElapsedTime() << endl;
}
TotalErrorExactSol += sqrt(d_tot);
TotalErrorResidual += Norm;
return( solver.NumIters() );
}
示例4: check
int check(Epetra_RowMatrix& A, Epetra_RowMatrix & B, bool verbose) {
int ierr = 0;
EPETRA_TEST_ERR(!A.Comm().NumProc()==B.Comm().NumProc(),ierr);
EPETRA_TEST_ERR(!A.Comm().MyPID()==B.Comm().MyPID(),ierr);
EPETRA_TEST_ERR(!A.Filled()==B.Filled(),ierr);
EPETRA_TEST_ERR(!A.HasNormInf()==B.HasNormInf(),ierr);
EPETRA_TEST_ERR(!A.LowerTriangular()==B.LowerTriangular(),ierr);
EPETRA_TEST_ERR(!A.Map().SameAs(B.Map()),ierr);
EPETRA_TEST_ERR(!A.MaxNumEntries()==B.MaxNumEntries(),ierr);
EPETRA_TEST_ERR(!A.NumGlobalCols64()==B.NumGlobalCols64(),ierr);
EPETRA_TEST_ERR(!A.NumGlobalDiagonals64()==B.NumGlobalDiagonals64(),ierr);
EPETRA_TEST_ERR(!A.NumGlobalNonzeros64()==B.NumGlobalNonzeros64(),ierr);
EPETRA_TEST_ERR(!A.NumGlobalRows64()==B.NumGlobalRows64(),ierr);
EPETRA_TEST_ERR(!A.NumMyCols()==B.NumMyCols(),ierr);
EPETRA_TEST_ERR(!A.NumMyDiagonals()==B.NumMyDiagonals(),ierr);
EPETRA_TEST_ERR(!A.NumMyNonzeros()==B.NumMyNonzeros(),ierr);
for (int i=0; i<A.NumMyRows(); i++) {
int nA, nB;
A.NumMyRowEntries(i,nA); B.NumMyRowEntries(i,nB);
EPETRA_TEST_ERR(!nA==nB,ierr);
}
EPETRA_TEST_ERR(!A.NumMyRows()==B.NumMyRows(),ierr);
EPETRA_TEST_ERR(!A.OperatorDomainMap().SameAs(B.OperatorDomainMap()),ierr);
EPETRA_TEST_ERR(!A.OperatorRangeMap().SameAs(B.OperatorRangeMap()),ierr);
EPETRA_TEST_ERR(!A.RowMatrixColMap().SameAs(B.RowMatrixColMap()),ierr);
EPETRA_TEST_ERR(!A.RowMatrixRowMap().SameAs(B.RowMatrixRowMap()),ierr);
EPETRA_TEST_ERR(!A.UpperTriangular()==B.UpperTriangular(),ierr);
EPETRA_TEST_ERR(!A.UseTranspose()==B.UseTranspose(),ierr);
int NumVectors = 5;
{ // No transpose case
Epetra_MultiVector X(A.OperatorDomainMap(), NumVectors);
Epetra_MultiVector YA1(A.OperatorRangeMap(), NumVectors);
Epetra_MultiVector YA2(YA1);
Epetra_MultiVector YB1(YA1);
Epetra_MultiVector YB2(YA1);
X.Random();
bool transA = false;
A.SetUseTranspose(transA);
B.SetUseTranspose(transA);
A.Apply(X,YA1);
A.Multiply(transA, X, YA2);
EPETRA_TEST_ERR(checkMultiVectors(YA1,YA2,"A Multiply and A Apply", verbose),ierr);
B.Apply(X,YB1);
EPETRA_TEST_ERR(checkMultiVectors(YA1,YB1,"A Multiply and B Multiply", verbose),ierr);
B.Multiply(transA, X, YB2);
EPETRA_TEST_ERR(checkMultiVectors(YA1,YB2,"A Multiply and B Apply", verbose), ierr);
}
{// transpose case
Epetra_MultiVector X(A.OperatorRangeMap(), NumVectors);
Epetra_MultiVector YA1(A.OperatorDomainMap(), NumVectors);
Epetra_MultiVector YA2(YA1);
Epetra_MultiVector YB1(YA1);
Epetra_MultiVector YB2(YA1);
X.Random();
bool transA = true;
A.SetUseTranspose(transA);
B.SetUseTranspose(transA);
A.Apply(X,YA1);
A.Multiply(transA, X, YA2);
EPETRA_TEST_ERR(checkMultiVectors(YA1,YA2, "A Multiply and A Apply (transpose)", verbose),ierr);
B.Apply(X,YB1);
EPETRA_TEST_ERR(checkMultiVectors(YA1,YB1, "A Multiply and B Multiply (transpose)", verbose),ierr);
B.Multiply(transA, X,YB2);
EPETRA_TEST_ERR(checkMultiVectors(YA1,YB2, "A Multiply and B Apply (transpose)", verbose),ierr);
}
Epetra_Vector diagA(A.RowMatrixRowMap());
EPETRA_TEST_ERR(A.ExtractDiagonalCopy(diagA),ierr);
Epetra_Vector diagB(B.RowMatrixRowMap());
EPETRA_TEST_ERR(B.ExtractDiagonalCopy(diagB),ierr);
EPETRA_TEST_ERR(checkMultiVectors(diagA,diagB, "ExtractDiagonalCopy", verbose),ierr);
Epetra_Vector rowA(A.RowMatrixRowMap());
EPETRA_TEST_ERR(A.InvRowSums(rowA),ierr);
Epetra_Vector rowB(B.RowMatrixRowMap());
EPETRA_TEST_ERR(B.InvRowSums(rowB),ierr)
EPETRA_TEST_ERR(checkMultiVectors(rowA,rowB, "InvRowSums", verbose),ierr);
Epetra_Vector colA(A.RowMatrixColMap());
EPETRA_TEST_ERR(A.InvColSums(colA),ierr);
Epetra_Vector colB(B.RowMatrixColMap());
EPETRA_TEST_ERR(B.InvColSums(colB),ierr);
EPETRA_TEST_ERR(checkMultiVectors(colA,colB, "InvColSums", verbose),ierr);
EPETRA_TEST_ERR(checkValues(A.NormInf(), B.NormInf(), "NormInf before scaling", verbose), ierr);
EPETRA_TEST_ERR(checkValues(A.NormOne(), B.NormOne(), "NormOne before scaling", verbose),ierr);
EPETRA_TEST_ERR(A.RightScale(colA),ierr);
EPETRA_TEST_ERR(B.RightScale(colB),ierr);
EPETRA_TEST_ERR(A.LeftScale(rowA),ierr);
EPETRA_TEST_ERR(B.LeftScale(rowB),ierr);
//.........这里部分代码省略.........
示例5: checkResults
int checkResults( bool trans,
Epetra_LinearProblemRedistor * redistor,
Epetra_LinearProblem * A,
Epetra_LinearProblem * R,
bool verbose) {
int m = A->GetRHS()->MyLength();
int n = A->GetLHS()->MyLength();
assert( m == n ) ;
Epetra_MultiVector *x = A->GetLHS() ;
Epetra_MultiVector x1( *x ) ;
// Epetra_MultiVector Difference( x1 ) ;
Epetra_MultiVector *b = A->GetRHS();
Epetra_RowMatrix *matrixA = A->GetMatrix();
assert( matrixA != 0 ) ;
int iam = matrixA->Comm().MyPID();
// Epetra_Time timer(A->Comm());
// double start = timer.ElapsedTime();
matrixA->Multiply(trans, *b, x1) ; // x = Ab
int M,N,nz;
int *ptr, *ind;
double *val, *rhs, *lhs;
int Nrhs, ldrhs, ldlhs;
redistor->ExtractHbData( M, N, nz, ptr, ind,
val, Nrhs, rhs, ldrhs,
lhs, ldlhs);
assert( M == N ) ;
if ( verbose ) {
cout << " iam = " << iam
<< " m = " << m << " n = " << n << " M = " << M << endl ;
cout << " iam = " << iam << " ptr = " << ptr[0] << " " << ptr[1] << " " << ptr[2] << " " << ptr[3] << " " << ptr[4] << " " << ptr[5] << endl ;
cout << " iam = " << iam << " ind = " << ind[0] << " " << ind[1] << " " << ind[2] << " " << ind[3] << " " << ind[4] << " " << ind[5] << endl ;
cout << " iam = " << iam << " val = " << val[0] << " " << val[1] << " " << val[2] << " " << val[3] << " " << val[4] << " " << val[5] << endl ;
}
// Create a serial map in case we end up needing it
// If it is created inside the else block below it would have to
// be with a call to new().
int NumMyElements_ = 0 ;
if (matrixA->Comm().MyPID()==0) NumMyElements_ = n;
Epetra_Map SerialMap( n, NumMyElements_, 0, matrixA->Comm() );
// These are unnecessary and useless
// Epetra_Vector serial_A_rhs( SerialMap ) ;
// Epetra_Vector serial_A_lhs( SerialMap ) ;
// Epetra_Export exporter( matrixA->BlockRowMap(), SerialMap) ;
//
// In each process, we will compute Rb putting the answer into LHS
//
for ( int k = 0 ; k < Nrhs; k ++ ) {
for ( int i = 0 ; i < M ; i ++ ) {
lhs[ i + k * ldlhs ] = 0.0;
}
for ( int i = 0 ; i < M ; i++ ) {
for ( int l = ptr[i]; l < ptr[i+1]; l++ ) {
int j = ind[l] ;
if ( verbose && N < 40 ) {
cout << " i = " << i << " j = " << j ;
cout << " l = " << l << " val[l] = " << val[l] ;
cout << " rhs = " << rhs[ j + k * ldrhs ] << endl ;
}
lhs[ i + k * ldrhs ] += val[l] * rhs[ j + k * ldrhs ] ;
}
}
if ( verbose && N < 40 ) {
cout << " lhs = " ;
for ( int j = 0 ; j < N ; j++ ) cout << " " << lhs[j] ;
cout << endl ;
cout << " rhs = " ;
for ( int j = 0 ; j < N ; j++ ) cout << " " << rhs[j] ;
cout << endl ;
}
const Epetra_Comm &comm = matrixA->Comm() ;
#ifdef HAVE_COMM_ASSERT_EQUAL
//
// Here we double check to make sure that lhs and rhs are
// replicated.
//
for ( int j = 0 ; j < N ; j++ ) {
assert( Comm_assert_equal( &comm, lhs[ j + k * ldrhs ] ) ) ;
assert( Comm_assert_equal( &comm, rhs[ j + k * ldrhs ] ) ) ;
}
#endif
}
//
//.........这里部分代码省略.........
示例6: GetPtent
// ======================================================================
void GetPtent(const Epetra_RowMatrix& A, Teuchos::ParameterList& List,
double* thisns, Teuchos::RCP<Epetra_CrsMatrix>& Ptent,
Teuchos::RCP<Epetra_MultiVector>& NextNS, const int domainoffset)
{
const int nsdim = List.get<int>("null space: dimension",-1);
if (nsdim<=0) ML_THROW("null space dimension not given",-1);
const Epetra_Map& rowmap = A.RowMatrixRowMap();
const int mylength = rowmap.NumMyElements();
// wrap nullspace into something more handy
Epetra_MultiVector ns(View,rowmap,thisns,mylength,nsdim);
// vector to hold aggregation information
Epetra_IntVector aggs(rowmap,false);
// aggregation with global aggregate numbering
int naggregates = GetGlobalAggregates(const_cast<Epetra_RowMatrix&>(A),List,thisns,aggs);
// build a domain map for Ptent
// find first aggregate on proc
int firstagg = -1;
int offset = -1;
for (int i=0; i<mylength; ++i)
if (aggs[i]>=0)
{
offset = firstagg = aggs[i];
break;
}
offset *= nsdim;
if (offset<0) ML_THROW("could not find any aggregate on proc",-2);
std::vector<int> coarsegids(naggregates*nsdim);
for (int i=0; i<naggregates; ++i)
for (int j=0; j<nsdim; ++j)
{
coarsegids[i*nsdim+j] = offset + domainoffset;
++offset;
}
Epetra_Map pdomainmap(-1,naggregates*nsdim,&coarsegids[0],0,A.Comm());
// loop aggregates and build ids for dofs
std::map<int,std::vector<int> > aggdofs;
std::map<int,std::vector<int> >::iterator fool;
for (int i=0; i<naggregates; ++i)
{
std::vector<int> gids(0);
aggdofs.insert(std::pair<int,std::vector<int> >(firstagg+i,gids));
}
for (int i=0; i<mylength; ++i)
{
if (aggs[i]<0) continue;
std::vector<int>& gids = aggdofs[aggs[i]];
gids.push_back(aggs.Map().GID(i));
}
#if 0 // debugging output
for (int proc=0; proc<A.Comm().NumProc(); ++proc)
{
if (proc==A.Comm().MyPID())
{
for (fool=aggdofs.begin(); fool!=aggdofs.end(); ++fool)
{
std::cout << "Proc " << proc << " Aggregate " << fool->first << " Dofs ";
std::vector<int>& gids = fool->second;
for (int i=0; i<(int)gids.size(); ++i) std::cout << gids[i] << " ";
std::cout << std::endl;
}
}
fflush(stdout);
A.Comm().Barrier();
}
#endif
// coarse level nullspace to be filled
NextNS = Teuchos::rcp(new Epetra_MultiVector(pdomainmap,nsdim,true));
Epetra_MultiVector& nextns = *NextNS;
// matrix Ptent
Ptent = Teuchos::rcp(new Epetra_CrsMatrix(Copy,rowmap,nsdim));
// loop aggregates and extract the appropriate slices of the nullspace.
// do QR and assemble Q and R to Ptent and NextNS
for (fool=aggdofs.begin(); fool!=aggdofs.end(); ++fool)
{
// extract aggregate-local junk of nullspace
const int aggsize = (int)fool->second.size();
Epetra_SerialDenseMatrix Bagg(aggsize,nsdim);
for (int i=0; i<aggsize; ++i)
for (int j=0; j<nsdim; ++j)
Bagg(i,j) = (*ns(j))[ns.Map().LID(fool->second[i])];
// Bagg = Q*R
int m = Bagg.M();
int n = Bagg.N();
int lwork = n*10;
int info = 0;
int k = std::min(m,n);
if (k!=n) ML_THROW("Aggregate too small, fatal!",-1);
std::vector<double> work(lwork);
std::vector<double> tau(k);
//.........这里部分代码省略.........
示例7: Ifpack_PrintSparsity
// ======================================================================
int Ifpack_PrintSparsity(const Epetra_RowMatrix& A, const char* InputFileName,
const int NumPDEEqns)
{
int ltit;
long long m,nc,nr,maxdim;
double lrmrgn,botmrgn,xtit,ytit,ytitof,fnstit,siz = 0.0;
double xl,xr, yb,yt, scfct,u2dot,frlw,delt,paperx;
bool square = false;
/*change square to .true. if you prefer a square frame around
a rectangular matrix */
double conv = 2.54;
char munt = 'E'; /* put 'E' for centimeters, 'U' for inches */
int ptitle = 0; /* position of the title, 0 under the drawing,
else above */
FILE* fp = NULL;
int NumMyRows;
//int NumMyCols;
long long NumGlobalRows;
long long NumGlobalCols;
int MyPID;
int NumProc;
char FileName[1024];
char title[1024];
const Epetra_Comm& Comm = A.Comm();
/* --------------------- execution begins ---------------------- */
if (strlen(A.Label()) != 0)
strcpy(title, A.Label());
else
sprintf(title, "%s", "matrix");
if (InputFileName == 0)
sprintf(FileName, "%s.ps", title);
else
strcpy(FileName, InputFileName);
MyPID = Comm.MyPID();
NumProc = Comm.NumProc();
NumMyRows = A.NumMyRows();
//NumMyCols = A.NumMyCols();
NumGlobalRows = A.NumGlobalRows64();
NumGlobalCols = A.NumGlobalCols64();
if (NumGlobalRows != NumGlobalCols)
IFPACK_CHK_ERR(-1); // never tested
/* to be changed for rect matrices */
maxdim = (NumGlobalRows>NumGlobalCols)?NumGlobalRows:NumGlobalCols;
maxdim /= NumPDEEqns;
m = 1 + maxdim;
nr = NumGlobalRows / NumPDEEqns + 1;
nc = NumGlobalCols / NumPDEEqns + 1;
if (munt == 'E') {
u2dot = 72.0/conv;
paperx = 21.0;
siz = 10.0;
}
else {
u2dot = 72.0;
paperx = 8.5*conv;
siz = siz*conv;
}
/* left and right margins (drawing is centered) */
lrmrgn = (paperx-siz)/2.0;
/* bottom margin : 2 cm */
botmrgn = 2.0;
/* c scaling factor */
scfct = siz*u2dot/m;
/* matrix frame line witdh */
frlw = 0.25;
/* font size for title (cm) */
fnstit = 0.5;
/* mfh 23 Jan 2013: title is always nonnull, since it's an array of
fixed nonzero length. The 'if' test thus results in a compiler
warning. */
/*if (title) ltit = strlen(title);*/
/*else ltit = 0;*/
ltit = strlen(title);
/* position of title : centered horizontally */
/* at 1.0 cm vertically over the drawing */
ytitof = 1.0;
xtit = paperx/2.0;
ytit = botmrgn+siz*nr/m + ytitof;
/* almost exact bounding box */
xl = lrmrgn*u2dot - scfct*frlw/2;
xr = (lrmrgn+siz)*u2dot + scfct*frlw/2;
yb = botmrgn*u2dot - scfct*frlw/2;
//.........这里部分代码省略.........
示例8: Ifpack_AnalyzeMatrixElements
int Ifpack_AnalyzeMatrixElements(const Epetra_RowMatrix& A,
const bool abs, const int steps)
{
bool verbose = (A.Comm().MyPID() == 0);
double min_val = DBL_MAX;
double max_val = -DBL_MAX;
std::vector<int> colInd(A.MaxNumEntries());
std::vector<double> colVal(A.MaxNumEntries());
for (int i = 0 ; i < A.NumMyRows() ; ++i) {
int Nnz;
IFPACK_CHK_ERR(A.ExtractMyRowCopy(i,A.MaxNumEntries(),Nnz,
&colVal[0],&colInd[0]));
for (int j = 0 ; j < Nnz ; ++j) {
double v = colVal[j];
if (abs)
if (v < 0) v = -v;
if (v < min_val)
min_val = v;
if (v > max_val)
max_val = v;
}
}
if (verbose) {
cout << endl;
Ifpack_PrintLine();
cout << "Label of matrix = " << A.Label() << endl;
cout << endl;
}
double delta = (max_val - min_val) / steps;
for (int k = 0 ; k < steps ; ++k) {
double below = delta * k + min_val;
double above = below + delta;
int MyBelow = 0, GlobalBelow;
for (int i = 0 ; i < A.NumMyRows() ; ++i) {
int Nnz;
IFPACK_CHK_ERR(A.ExtractMyRowCopy(i,A.MaxNumEntries(),Nnz,
&colVal[0],&colInd[0]));
for (int j = 0 ; j < Nnz ; ++j) {
double v = colVal[j];
if (abs)
if (v < 0) v = -v;
if (v >= below && v < above) MyBelow++;
}
}
A.Comm().SumAll(&MyBelow, &GlobalBelow, 1);
if (verbose) {
printf("Elements in [%+7e, %+7e) = %10d ( = %5.2f %%)\n",
below, above, GlobalBelow,
100.0 * GlobalBelow / A.NumGlobalNonzeros64());
}
}
if (verbose) {
Ifpack_PrintLine();
cout << endl;
}
return(0);
}
示例9: Ifpack_Analyze
int Ifpack_Analyze(const Epetra_RowMatrix& A, const bool Cheap,
const int NumPDEEqns)
{
int NumMyRows = A.NumMyRows();
long long NumGlobalRows = A.NumGlobalRows64();
long long NumGlobalCols = A.NumGlobalCols64();
long long MyBandwidth = 0, GlobalBandwidth;
long long MyLowerNonzeros = 0, MyUpperNonzeros = 0;
long long GlobalLowerNonzeros, GlobalUpperNonzeros;
long long MyDiagonallyDominant = 0, GlobalDiagonallyDominant;
long long MyWeaklyDiagonallyDominant = 0, GlobalWeaklyDiagonallyDominant;
double MyMin, MyAvg, MyMax;
double GlobalMin, GlobalAvg, GlobalMax;
long long GlobalStorage;
bool verbose = (A.Comm().MyPID() == 0);
GlobalStorage = sizeof(int*) * NumGlobalRows +
sizeof(int) * A.NumGlobalNonzeros64() +
sizeof(double) * A.NumGlobalNonzeros64();
if (verbose) {
print();
Ifpack_PrintLine();
print<const char*>("Label", A.Label());
print<long long>("Global rows", NumGlobalRows);
print<long long>("Global columns", NumGlobalCols);
print<long long>("Stored nonzeros", A.NumGlobalNonzeros64());
print<long long>("Nonzeros / row", A.NumGlobalNonzeros64() / NumGlobalRows);
print<double>("Estimated storage (Mbytes)", 1.0e-6 * GlobalStorage);
}
long long NumMyActualNonzeros = 0, NumGlobalActualNonzeros;
long long NumMyEmptyRows = 0, NumGlobalEmptyRows;
long long NumMyDirichletRows = 0, NumGlobalDirichletRows;
std::vector<int> colInd(A.MaxNumEntries());
std::vector<double> colVal(A.MaxNumEntries());
Epetra_Vector Diag(A.RowMatrixRowMap());
Epetra_Vector RowSum(A.RowMatrixRowMap());
Diag.PutScalar(0.0);
RowSum.PutScalar(0.0);
for (int i = 0 ; i < NumMyRows ; ++i) {
long long GRID = A.RowMatrixRowMap().GID64(i);
int Nnz;
IFPACK_CHK_ERR(A.ExtractMyRowCopy(i,A.MaxNumEntries(),Nnz,
&colVal[0],&colInd[0]));
if (Nnz == 0)
NumMyEmptyRows++;
if (Nnz == 1)
NumMyDirichletRows++;
for (int j = 0 ; j < Nnz ; ++j) {
double v = colVal[j];
if (v < 0) v = -v;
if (colVal[j] != 0.0)
NumMyActualNonzeros++;
long long GCID = A.RowMatrixColMap().GID64(colInd[j]);
if (GCID != GRID)
RowSum[i] += v;
else
Diag[i] = v;
if (GCID < GRID)
MyLowerNonzeros++;
else if (GCID > GRID)
MyUpperNonzeros++;
long long b = GCID - GRID;
if (b < 0) b = -b;
if (b > MyBandwidth)
MyBandwidth = b;
}
if (Diag[i] > RowSum[i])
MyDiagonallyDominant++;
if (Diag[i] >= RowSum[i])
MyWeaklyDiagonallyDominant++;
RowSum[i] += Diag[i];
}
// ======================== //
// summing up global values //
// ======================== //
A.Comm().SumAll(&MyDiagonallyDominant,&GlobalDiagonallyDominant,1);
A.Comm().SumAll(&MyWeaklyDiagonallyDominant,&GlobalWeaklyDiagonallyDominant,1);
A.Comm().SumAll(&NumMyActualNonzeros, &NumGlobalActualNonzeros, 1);
A.Comm().SumAll(&NumMyEmptyRows, &NumGlobalEmptyRows, 1);
A.Comm().SumAll(&NumMyDirichletRows, &NumGlobalDirichletRows, 1);
//.........这里部分代码省略.........
示例10: TestMultiLevelPreconditioner
int TestMultiLevelPreconditioner(char ProblemType[],
Teuchos::ParameterList & MLList,
Epetra_LinearProblem & Problem, double & TotalErrorResidual,
double & TotalErrorExactSol)
{
Epetra_MultiVector* lhs = Problem.GetLHS();
Epetra_MultiVector* rhs = Problem.GetRHS();
Epetra_RowMatrix* A = Problem.GetMatrix();
// ======================================== //
// create a rhs corresponding to lhs or 1's //
// ======================================== //
lhs->PutScalar(1.0);
A->Multiply(false,*lhs,*rhs);
lhs->PutScalar(0.0);
Epetra_Time Time(A->Comm());
Epetra_MultiVector lhs2(*lhs);
Epetra_MultiVector rhs2(*rhs);
// =================== //
// call ML and AztecOO //
// =================== //
AztecOO solver(Problem);
MLList.set("ML output", 0);
ML_set_random_seed(24601);
ML_Epetra::MultiLevelPreconditioner * MLPrec = new ML_Epetra::MultiLevelPreconditioner(*A, MLList, true);
// tell AztecOO to use this preconditioner, then solve
solver.SetPrecOperator(MLPrec);
solver.SetAztecOption(AZ_solver, AZ_gmres);
solver.SetAztecOption(AZ_output, 32);
solver.SetAztecOption(AZ_kspace, 160);
solver.Iterate(1550, 1e-12);
delete MLPrec;
// ================================= //
// call ML and AztecOO a second time //
// ================================= //
Epetra_LinearProblem Problem2(A,&lhs2,&rhs2);
AztecOO solver2(Problem2);
ML_set_random_seed(24601);
ML_Epetra::MultiLevelPreconditioner * MLPrec2 = new ML_Epetra::MultiLevelPreconditioner(*A, MLList, true);
// tell AztecOO to use this preconditioner, then solve
solver2.SetPrecOperator(MLPrec2);
solver2.SetAztecOption(AZ_solver, AZ_gmres);
solver2.SetAztecOption(AZ_output, 32);
solver2.SetAztecOption(AZ_kspace, 160);
solver2.Iterate(1550, 1e-12);
// ==================================================== //
// compute difference between the two ML solutions //
// ==================================================== //
double d = 0.0, d_tot = 0.0;
for( int i=0 ; i<lhs->Map().NumMyElements() ; ++i )
d += ((*lhs)[0][i] - lhs2[0][i]) * ((*lhs)[0][i] - lhs2[0][i]);
A->Comm().SumAll(&d,&d_tot,1);
string msg = ProblemType;
if (A->Comm().MyPID() == 0) {
cout << msg << "......Using " << A->Comm().NumProc() << " processes" << endl;
cout << msg << "......||x_1 - x_2||_2 = " << sqrt(d_tot) << endl;
cout << msg << "......Total Time = " << Time.ElapsedTime() << endl;
}
TotalErrorExactSol += sqrt(d_tot);
return( solver.NumIters() );
}