本文整理汇总了C++中Constant::getAggregateElement方法的典型用法代码示例。如果您正苦于以下问题:C++ Constant::getAggregateElement方法的具体用法?C++ Constant::getAggregateElement怎么用?C++ Constant::getAggregateElement使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Constant
的用法示例。
在下文中一共展示了Constant::getAggregateElement方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: lowerCoverageData
void InstrProfiling::lowerCoverageData(GlobalVariable *CoverageData) {
CoverageData->setSection(getCoverageSection());
CoverageData->setAlignment(8);
Constant *Init = CoverageData->getInitializer();
// We're expecting { i32, i32, i32, i32, [n x { i8*, i32, i32 }], [m x i8] }
// for some C. If not, the frontend's given us something broken.
assert(Init->getNumOperands() == 6 && "bad number of fields in coverage map");
assert(isa<ConstantArray>(Init->getAggregateElement(4)) &&
"invalid function list in coverage map");
ConstantArray *Records = cast<ConstantArray>(Init->getAggregateElement(4));
for (unsigned I = 0, E = Records->getNumOperands(); I < E; ++I) {
Constant *Record = Records->getOperand(I);
Value *V = const_cast<Value *>(Record->getOperand(0))->stripPointerCasts();
assert(isa<GlobalVariable>(V) && "Missing reference to function name");
GlobalVariable *Name = cast<GlobalVariable>(V);
// If we have region counters for this name, we've already handled it.
auto It = RegionCounters.find(Name);
if (It != RegionCounters.end())
continue;
// Move the name variable to the right section.
Name->setSection(getNameSection());
Name->setAlignment(1);
}
}
示例2: isZero
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT,
AssumptionCache *AC) {
// Assume undef could be zero.
if (isa<UndefValue>(V))
return true;
VectorType *VecTy = dyn_cast<VectorType>(V->getType());
if (!VecTy) {
KnownBits Known = computeKnownBits(V, DL, 0, AC, dyn_cast<Instruction>(V), DT);
return Known.isZero();
}
// Per-component check doesn't work with zeroinitializer
Constant *C = dyn_cast<Constant>(V);
if (!C)
return false;
if (C->isZeroValue())
return true;
// For a vector, KnownZero will only be true if all values are zero, so check
// this per component
for (unsigned I = 0, N = VecTy->getNumElements(); I != N; ++I) {
Constant *Elem = C->getAggregateElement(I);
if (isa<UndefValue>(Elem))
return true;
KnownBits Known = computeKnownBits(Elem, DL);
if (Known.isZero())
return true;
}
return false;
}
示例3: isConstantIntVector
static bool isConstantIntVector(Value *Mask) {
Constant *C = dyn_cast<Constant>(Mask);
if (!C)
return false;
unsigned NumElts = Mask->getType()->getVectorNumElements();
for (unsigned i = 0; i != NumElts; ++i) {
Constant *CElt = C->getAggregateElement(i);
if (!CElt || !isa<ConstantInt>(CElt))
return false;
}
return true;
}
示例4: get
/// \brief Given a vector and an element number, see if the scalar value is
/// already around as a register, for example if it were inserted then extracted
/// from the vector.
llvm::Value *llvm::findScalarElement(llvm::Value *V, unsigned EltNo) {
assert(V->getType()->isVectorTy() && "Not looking at a vector?");
VectorType *VTy = cast<VectorType>(V->getType());
unsigned Width = VTy->getNumElements();
if (EltNo >= Width) // Out of range access.
return UndefValue::get(VTy->getElementType());
if (Constant *C = dyn_cast<Constant>(V))
return C->getAggregateElement(EltNo);
if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
// If this is an insert to a variable element, we don't know what it is.
if (!isa<ConstantInt>(III->getOperand(2)))
return nullptr;
unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
// If this is an insert to the element we are looking for, return the
// inserted value.
if (EltNo == IIElt)
return III->getOperand(1);
// Otherwise, the insertelement doesn't modify the value, recurse on its
// vector input.
return findScalarElement(III->getOperand(0), EltNo);
}
if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
int InEl = SVI->getMaskValue(EltNo);
if (InEl < 0)
return UndefValue::get(VTy->getElementType());
if (InEl < (int)LHSWidth)
return findScalarElement(SVI->getOperand(0), InEl);
return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
}
// Extract a value from a vector add operation with a constant zero.
Value *Val = nullptr; Constant *Con = nullptr;
if (match(V,
llvm::PatternMatch::m_Add(llvm::PatternMatch::m_Value(Val),
llvm::PatternMatch::m_Constant(Con)))) {
if (Con->getAggregateElement(EltNo)->isNullValue())
return findScalarElement(Val, EltNo);
}
// Otherwise, we don't know.
return nullptr;
}
示例5: isZero
static bool isZero(Value *V, const DataLayout *DL) {
// Assume undef could be zero.
if (isa<UndefValue>(V))
return true;
VectorType *VecTy = dyn_cast<VectorType>(V->getType());
if (!VecTy) {
unsigned BitWidth = V->getType()->getIntegerBitWidth();
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
computeKnownBits(V, KnownZero, KnownOne, DL);
return KnownZero.isAllOnesValue();
}
// Per-component check doesn't work with zeroinitializer
Constant *C = dyn_cast<Constant>(V);
if (!C)
return false;
if (C->isZeroValue())
return true;
// For a vector, KnownZero will only be true if all values are zero, so check
// this per component
unsigned BitWidth = VecTy->getElementType()->getIntegerBitWidth();
for (unsigned I = 0, N = VecTy->getNumElements(); I != N; ++I) {
Constant *Elem = C->getAggregateElement(I);
if (isa<UndefValue>(Elem))
return true;
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
computeKnownBits(Elem, KnownZero, KnownOne, DL);
if (KnownZero.isAllOnesValue())
return true;
}
return false;
}
示例6: ReplaceInstUsesWith
Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (Value *V = SimplifySRemInst(Op0, Op1, TD))
return ReplaceInstUsesWith(I, V);
// Handle the integer rem common cases
if (Instruction *Common = commonIRemTransforms(I))
return Common;
if (Value *RHSNeg = dyn_castNegVal(Op1))
if (!isa<Constant>(RHSNeg) ||
(isa<ConstantInt>(RHSNeg) &&
cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
// X % -Y -> X % Y
Worklist.AddValue(I.getOperand(1));
I.setOperand(1, RHSNeg);
return &I;
}
// If the sign bits of both operands are zero (i.e. we can prove they are
// unsigned inputs), turn this into a urem.
if (I.getType()->isIntegerTy()) {
APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
// X srem Y -> X urem Y, iff X and Y don't have sign bit set
return BinaryOperator::CreateURem(Op0, Op1, I.getName());
}
}
// If it's a constant vector, flip any negative values positive.
if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
Constant *C = cast<Constant>(Op1);
unsigned VWidth = C->getType()->getVectorNumElements();
bool hasNegative = false;
bool hasMissing = false;
for (unsigned i = 0; i != VWidth; ++i) {
Constant *Elt = C->getAggregateElement(i);
if (Elt == 0) {
hasMissing = true;
break;
}
if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
if (RHS->isNegative())
hasNegative = true;
}
if (hasNegative && !hasMissing) {
SmallVector<Constant *, 16> Elts(VWidth);
for (unsigned i = 0; i != VWidth; ++i) {
Elts[i] = C->getAggregateElement(i); // Handle undef, etc.
if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
if (RHS->isNegative())
Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
}
}
Constant *NewRHSV = ConstantVector::get(Elts);
if (NewRHSV != C) { // Don't loop on -MININT
Worklist.AddValue(I.getOperand(1));
I.setOperand(1, NewRHSV);
return &I;
}
}
}
return 0;
}