本文整理汇总了C++中CTime::time_diff_sec方法的典型用法代码示例。如果您正苦于以下问题:C++ CTime::time_diff_sec方法的具体用法?C++ CTime::time_diff_sec怎么用?C++ CTime::time_diff_sec使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类CTime
的用法示例。
在下文中一共展示了CTime::time_diff_sec方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: train
//.........这里部分代码省略.........
float64_t obj=0;
delta_active=num_vec;
last_it_noimprovement=-1;
work_epsilon=0.99;
autoselected_epsilon=work_epsilon;
compute_projection(num_feat, num_vec);
CTime time;
float64_t loop_time=0;
while (!(CSignal::cancel_computations()))
{
CTime t;
delta_active=find_active(num_feat, num_vec, num_active, num_bound);
update_active(num_feat, num_vec);
#ifdef DEBUG_SUBGRADIENTLPM
SG_PRINT("==================================================\niteration: %d ", num_iterations);
obj=compute_objective(num_feat, num_vec);
SG_PRINT("objective:%.10f alpha: %.10f dir_deriv: %f num_bound: %d num_active: %d work_eps: %10.10f eps: %10.10f auto_eps: %10.10f time:%f\n",
obj, alpha, dir_deriv, num_bound, num_active, work_epsilon, epsilon, autoselected_epsilon, loop_time);
#else
SG_ABS_PROGRESS(work_epsilon, -CMath::log10(work_epsilon), -CMath::log10(0.99999999), -CMath::log10(epsilon), 6);
#endif
//CMath::display_vector(w, w_dim, "w");
//SG_PRINT("bias: %f\n", bias);
//CMath::display_vector(proj, num_vec, "proj");
//CMath::display_vector(idx_active, num_active, "idx_active");
//SG_PRINT("num_active: %d\n", num_active);
//CMath::display_vector(idx_bound, num_bound, "idx_bound");
//SG_PRINT("num_bound: %d\n", num_bound);
//CMath::display_vector(sum_CXy_active, num_feat, "sum_CXy_active");
//SG_PRINT("sum_Cy_active: %f\n", sum_Cy_active);
//CMath::display_vector(grad_w, num_feat, "grad_w");
//SG_PRINT("grad_b:%f\n", grad_b);
dir_deriv=compute_min_subgradient(num_feat, num_vec, num_active, num_bound);
alpha=line_search(num_feat, num_vec);
if (num_it_noimprovement==10 || num_bound<qpsize_max)
{
float64_t norm_grad=CMath::dot(grad_w, grad_w, num_feat) +
grad_b*grad_b;
SG_PRINT("CHECKING OPTIMALITY CONDITIONS: "
"work_epsilon: %10.10f delta_active:%d alpha: %10.10f norm_grad: %10.10f a*norm_grad:%10.16f\n",
work_epsilon, delta_active, alpha, norm_grad, CMath::abs(alpha*norm_grad));
if (work_epsilon<=epsilon && delta_active==0 && CMath::abs(alpha*norm_grad)<1e-6)
break;
else
num_it_noimprovement=0;
}
//if (work_epsilon<=epsilon && delta_active==0 && num_it_noimprovement)
if ((dir_deriv<0 || alpha==0) && (work_epsilon<=epsilon && delta_active==0))
{
if (last_it_noimprovement==num_iterations-1)
{
SG_PRINT("no improvement...\n");
num_it_noimprovement++;
}
else
num_it_noimprovement=0;
last_it_noimprovement=num_iterations;
}
CMath::vec1_plus_scalar_times_vec2(w, -alpha, grad_w, num_feat);
bias-=alpha*grad_b;
update_projection(alpha, num_vec);
t.stop();
loop_time=t.time_diff_sec();
num_iterations++;
if (get_max_train_time()>0 && time.cur_time_diff()>get_max_train_time())
break;
}
SG_INFO("converged after %d iterations\n", num_iterations);
obj=compute_objective(num_feat, num_vec);
SG_INFO("objective: %f alpha: %f dir_deriv: %f num_bound: %d num_active: %d\n",
obj, alpha, dir_deriv, num_bound, num_active);
#ifdef DEBUG_SUBGRADIENTLPM
CMath::display_vector(w, w_dim, "w");
SG_PRINT("bias: %f\n", bias);
#endif
SG_PRINT("solver time:%f s\n", lpmtim);
cleanup();
return true;
}
示例2: compute_min_subgradient
float64_t CSubGradientSVM::compute_min_subgradient(
int32_t num_feat, int32_t num_vec, int32_t num_active, int32_t num_bound)
{
float64_t dir_deriv=0;
if (num_bound > 0)
{
CTime t2;
CMath::add(v, 1.0, w, -1.0, sum_CXy_active, num_feat);
if (num_bound>=qpsize_max && num_it_noimprovement!=10) // if qp gets to large, lets just choose a random beta
{
//SG_PRINT("qpsize too large (%d>=%d) choosing random subgradient/beta\n", num_bound, qpsize_max);
for (int32_t i=0; i<num_bound; i++)
beta[i]=CMath::random(0.0,1.0);
}
else
{
memset(beta, 0, sizeof(float64_t)*num_bound);
float64_t bias_const=0;
if (use_bias)
bias_const=1;
for (int32_t i=0; i<num_bound; i++)
{
for (int32_t j=i; j<num_bound; j++)
{
Z[i*num_bound+j]= 2.0*C1*C1*get_label(idx_bound[i])*get_label(idx_bound[j])*
(features->dot(idx_bound[i], features, idx_bound[j]) + bias_const);
Z[j*num_bound+i]=Z[i*num_bound+j];
}
Zv[i]=-2.0*C1*get_label(idx_bound[i])*
(features->dense_dot(idx_bound[i], v, num_feat)-sum_Cy_active);
}
//CMath::display_matrix(Z, num_bound, num_bound, "Z");
//CMath::display_vector(Zv, num_bound, "Zv");
t2.stop();
#ifdef DEBUG_SUBGRADIENTSVM
t2.time_diff_sec(true);
#endif
CTime t;
CQPBSVMLib solver(Z,num_bound, Zv,num_bound, 1.0);
//solver.set_solver(QPB_SOLVER_GRADDESC);
//solver.set_solver(QPB_SOLVER_GS);
#ifdef USE_CPLEX
solver.set_solver(QPB_SOLVER_CPLEX);
#else
solver.set_solver(QPB_SOLVER_SCAS);
#endif
solver.solve_qp(beta, num_bound);
t.stop();
#ifdef DEBUG_SUBGRADIENTSVM
tim+=t.time_diff_sec(true);
#else
tim+=t.time_diff_sec(false);
#endif
//CMath::display_vector(beta, num_bound, "beta gs");
//solver.set_solver(QPB_SOLVER_CPLEX);
//solver.solve_qp(beta, num_bound);
//CMath::display_vector(beta, num_bound, "beta cplex");
//CMath::display_vector(grad_w, num_feat, "grad_w");
//SG_PRINT("grad_b:%f\n", grad_b);
}
CMath::add(grad_w, 1.0, w, -1.0, sum_CXy_active, num_feat);
grad_b = -sum_Cy_active;
for (int32_t i=0; i<num_bound; i++)
{
features->add_to_dense_vec(-C1*beta[i]*get_label(idx_bound[i]), idx_bound[i], grad_w, num_feat);
if (use_bias)
grad_b -= C1 * get_label(idx_bound[i])*beta[i];
}
dir_deriv = CMath::dot(grad_w, v, num_feat) - grad_b*sum_Cy_active;
for (int32_t i=0; i<num_bound; i++)
{
float64_t val= C1*get_label(idx_bound[i])*(features->dense_dot(idx_bound[i], grad_w, num_feat)+grad_b);
dir_deriv += CMath::max(0.0, val);
}
}
else
{
CMath::add(grad_w, 1.0, w, -1.0, sum_CXy_active, num_feat);
grad_b = -sum_Cy_active;
dir_deriv = CMath::dot(grad_w, grad_w, num_feat)+ grad_b*grad_b;
}
//.........这里部分代码省略.........