本文整理汇总了C++中BasisCachePtr::setRefCellPoints方法的典型用法代码示例。如果您正苦于以下问题:C++ BasisCachePtr::setRefCellPoints方法的具体用法?C++ BasisCachePtr::setRefCellPoints怎么用?C++ BasisCachePtr::setRefCellPoints使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类BasisCachePtr
的用法示例。
在下文中一共展示了BasisCachePtr::setRefCellPoints方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: values
void values(FieldContainer<double> &values, BasisCachePtr sliceBasisCache) {
vector<GlobalIndexType> sliceCellIDs = sliceBasisCache->cellIDs();
Teuchos::Array<int> dim;
values.dimensions(dim);
dim[0] = 1; // one cell
Teuchos::Array<int> offset(dim.size());
for (int cellOrdinal = 0; cellOrdinal < sliceCellIDs.size(); cellOrdinal++) {
offset[0] = cellOrdinal;
int enumeration = values.getEnumeration(offset);
FieldContainer<double>valuesForCell(dim,&values[enumeration]);
GlobalIndexType sliceCellID = sliceCellIDs[cellOrdinal];
int numPoints = sliceBasisCache->getPhysicalCubaturePoints().dimension(1);
int spaceDim = sliceBasisCache->getPhysicalCubaturePoints().dimension(2);
FieldContainer<double> spaceTimePhysicalPoints(1,numPoints,spaceDim+1);
for (int ptOrdinal=0; ptOrdinal<numPoints; ptOrdinal++) {
for (int d=0; d<spaceDim; d++) {
spaceTimePhysicalPoints(0,ptOrdinal,d) = sliceBasisCache->getPhysicalCubaturePoints()(cellOrdinal,ptOrdinal,d);
}
spaceTimePhysicalPoints(0,ptOrdinal,spaceDim) = _t;
}
GlobalIndexType cellID = _cellIDMap[sliceCellID];
BasisCachePtr spaceTimeBasisCache = BasisCache::basisCacheForCell(_spaceTimeMesh, cellID);
FieldContainer<double> spaceTimeRefPoints(1,numPoints,spaceDim+1);
CamelliaCellTools::mapToReferenceFrame(spaceTimeRefPoints, spaceTimePhysicalPoints, _spaceTimeMesh, cellID);
spaceTimeRefPoints.resize(numPoints,spaceDim+1);
spaceTimeBasisCache->setRefCellPoints(spaceTimeRefPoints);
_spaceTimeFunction->values(valuesForCell, spaceTimeBasisCache);
}
}
示例2: values
void PreviousSolutionFunction::values(FieldContainer<double> &values, BasisCachePtr basisCache) {
int rank = Teuchos::GlobalMPISession::getRank();
if (_overrideMeshCheck) {
_solnExpression->evaluate(values, _soln, basisCache);
return;
}
if (!basisCache.get()) cout << "basisCache is nil!\n";
if (!_soln.get()) cout << "_soln is nil!\n";
// values are stored in (C,P,D) order
if (basisCache->mesh().get() == _soln->mesh().get()) {
_solnExpression->evaluate(values, _soln, basisCache);
} else {
static bool warningIssued = false;
if (!warningIssued) {
if (rank==0)
cout << "NOTE: In PreviousSolutionFunction, basisCache's mesh doesn't match solution's. If this is not what you intended, it would be a good idea to make sure that the mesh is passed in on BasisCache construction; the evaluation will be a lot slower without it...\n";
warningIssued = true;
}
// get the physicalPoints, and make a basisCache for each...
FieldContainer<double> physicalPoints = basisCache->getPhysicalCubaturePoints();
FieldContainer<double> value(1,1); // assumes scalar-valued solution function.
int numCells = physicalPoints.dimension(0);
int numPoints = physicalPoints.dimension(1);
int spaceDim = physicalPoints.dimension(2);
physicalPoints.resize(numCells*numPoints,spaceDim);
vector< ElementPtr > elements = _soln->mesh()->elementsForPoints(physicalPoints, false); // false: don't make elements null just because they're off-rank.
FieldContainer<double> point(1,spaceDim);
FieldContainer<double> refPoint(1,spaceDim);
int combinedIndex = 0;
vector<GlobalIndexType> cellID;
cellID.push_back(-1);
BasisCachePtr basisCacheOnePoint;
for (int cellIndex=0; cellIndex<numCells; cellIndex++) {
for (int ptIndex=0; ptIndex<numPoints; ptIndex++, combinedIndex++) {
if (elements[combinedIndex].get()==NULL) continue; // no element found for point; skip it…
ElementTypePtr elemType = elements[combinedIndex]->elementType();
for (int d=0; d<spaceDim; d++) {
point(0,d) = physicalPoints(combinedIndex,d);
}
if (elements[combinedIndex]->cellID() != cellID[0]) {
cellID[0] = elements[combinedIndex]->cellID();
basisCacheOnePoint = Teuchos::rcp( new BasisCache(elemType, _soln->mesh()) );
basisCacheOnePoint->setPhysicalCellNodes(_soln->mesh()->physicalCellNodesForCell(cellID[0]),cellID,false); // false: don't createSideCacheToo
}
// compute the refPoint:
typedef CellTools<double> CellTools;
int whichCell = 0;
CellTools::mapToReferenceFrame(refPoint,point,_soln->mesh()->physicalCellNodesForCell(cellID[0]),
*(elemType->cellTopoPtr),whichCell);
basisCacheOnePoint->setRefCellPoints(refPoint);
// cout << "refCellPoints:\n " << refPoint;
// cout << "physicalCubaturePoints:\n " << basisCacheOnePoint->getPhysicalCubaturePoints();
_solnExpression->evaluate(value, _soln, basisCacheOnePoint);
// cout << "value at point (" << point(0,0) << ", " << point(0,1) << ") = " << value(0,0) << endl;
values(cellIndex,ptIndex) = value(0,0);
}
}
}
}
示例3: basisSumAtParametricPoint
double basisSumAtParametricPoint(FieldContainer<double> &basisCoefficients, BasisPtr basis, double tValue, BasisCachePtr parametricBasisCache)
{
int numPoints = 1;
int spaceDim = 1;
FieldContainer<double> parametricPoints(numPoints,spaceDim);
parametricPoints[0] = tValue;
FieldContainer<double> refCellPoints = parametricBasisCache->getRefCellPointsForPhysicalPoints(parametricPoints);
parametricBasisCache->setRefCellPoints(refCellPoints);
Teuchos::RCP< const FieldContainer<double> > basisValues = parametricBasisCache->getValues(basis, OP_VALUE);
double sum = 0;
int ptIndex = 0; // one point
for (int fieldIndex=0; fieldIndex<basisCoefficients.size(); fieldIndex++)
{
sum += (*basisValues)(fieldIndex,ptIndex) * basisCoefficients(fieldIndex);
}
return sum;
}
示例4: projectFunctionOntoBasisInterpolating
void Projector::projectFunctionOntoBasisInterpolating(FieldContainer<double> &basisCoefficients, FunctionPtr fxn,
BasisPtr basis, BasisCachePtr domainBasisCache) {
basisCoefficients.initialize(0);
CellTopoPtr domainTopo = basis->domainTopology();
unsigned domainDim = domainTopo->getDimension();
IPPtr ip;
bool traceVar = domainBasisCache->isSideCache();
pair<IPPtr, VarPtr> ipVarPair = IP::standardInnerProductForFunctionSpace(basis->functionSpace(), traceVar, domainDim);
ip = ipVarPair.first;
VarPtr v = ipVarPair.second;
IPPtr ip_l2 = Teuchos::rcp( new IP );
ip_l2->addTerm(v);
// for now, make all projections use L^2... (having some issues with gradients and cell Jacobians--I think we need the restriction of the cell Jacobian to the subcell, e.g., and it's not clear how to do that...)
ip = ip_l2;
FieldContainer<double> referenceDomainNodes(domainTopo->getVertexCount(),domainDim);
CamelliaCellTools::refCellNodesForTopology(referenceDomainNodes, domainTopo);
int basisCardinality = basis->getCardinality();
set<int> allDofs;
for (int i=0; i<basisCardinality; i++) {
allDofs.insert(i);
}
for (int d=0; d<=domainDim; d++) {
FunctionPtr projectionThusFar = NewBasisSumFunction::basisSumFunction(basis, basisCoefficients);
FunctionPtr fxnToApproximate = fxn - projectionThusFar;
int subcellCount = domainTopo->getSubcellCount(d);
for (int subcord=0; subcord<subcellCount; subcord++) {
set<int> subcellDofOrdinals = basis->dofOrdinalsForSubcell(d, subcord);
if (subcellDofOrdinals.size() > 0) {
FieldContainer<double> refCellPoints;
FieldContainer<double> cubatureWeightsSubcell; // allows us to integrate over the fine subcell even when domain is higher-dimensioned
if (d == 0) {
refCellPoints.resize(1,domainDim);
for (int d1=0; d1<domainDim; d1++) {
refCellPoints(0,d1) = referenceDomainNodes(subcord,d1);
}
cubatureWeightsSubcell.resize(1);
cubatureWeightsSubcell(0) = 1.0;
} else {
CellTopoPtr subcellTopo = domainTopo->getSubcell(d, subcord);
// Teuchos::RCP<Cubature<double> > subcellCubature = cubFactory.create(subcellTopo, domainBasisCache->cubatureDegree());
BasisCachePtr subcellCache = Teuchos::rcp( new BasisCache(subcellTopo, domainBasisCache->cubatureDegree(), false) );
int numPoints = subcellCache->getRefCellPoints().dimension(0);
refCellPoints.resize(numPoints,domainDim);
cubatureWeightsSubcell = subcellCache->getCubatureWeights();
if (d == domainDim) {
refCellPoints = subcellCache->getRefCellPoints();
} else {
CamelliaCellTools::mapToReferenceSubcell(refCellPoints, subcellCache->getRefCellPoints(), d,
subcord, domainTopo);
}
}
domainBasisCache->setRefCellPoints(refCellPoints, cubatureWeightsSubcell);
IPPtr ipForProjection = (d==0) ? ip_l2 : ip; // just use values at vertices (ignore derivatives)
set<int> dofsToSkip = allDofs;
for (set<int>::iterator dofOrdinalIt=subcellDofOrdinals.begin(); dofOrdinalIt != subcellDofOrdinals.end(); dofOrdinalIt++) {
dofsToSkip.erase(*dofOrdinalIt);
}
FieldContainer<double> newBasisCoefficients;
projectFunctionOntoBasis(newBasisCoefficients, fxnToApproximate, basis, domainBasisCache, ipForProjection, v, dofsToSkip);
for (int cellOrdinal=0; cellOrdinal<newBasisCoefficients.dimension(0); cellOrdinal++) {
for (set<int>::iterator dofOrdinalIt=subcellDofOrdinals.begin(); dofOrdinalIt != subcellDofOrdinals.end(); dofOrdinalIt++) {
basisCoefficients(cellOrdinal,*dofOrdinalIt) = newBasisCoefficients(cellOrdinal,*dofOrdinalIt);
}
}
}
}
}
}
示例5: neighborBasesAgreeOnSides
bool MeshTestUtility::neighborBasesAgreeOnSides(Teuchos::RCP<Mesh> mesh, Epetra_MultiVector &globalSolutionCoefficients)
{
bool success = true;
MeshTopologyViewPtr meshTopo = mesh->getTopology();
int spaceDim = meshTopo->getDimension();
set<IndexType> activeCellIndices = meshTopo->getActiveCellIndices();
for (set<IndexType>::iterator cellIt=activeCellIndices.begin(); cellIt != activeCellIndices.end(); cellIt++)
{
IndexType cellIndex = *cellIt;
CellPtr cell = meshTopo->getCell(cellIndex);
BasisCachePtr fineCellBasisCache = BasisCache::basisCacheForCell(mesh, cellIndex);
ElementTypePtr fineElemType = mesh->getElementType(cellIndex);
DofOrderingPtr fineElemTrialOrder = fineElemType->trialOrderPtr;
FieldContainer<double> fineSolutionCoefficients(fineElemTrialOrder->totalDofs());
mesh->globalDofAssignment()->interpretGlobalCoefficients(cellIndex, fineSolutionCoefficients, globalSolutionCoefficients);
// if ((cellIndex==0) || (cellIndex==2)) {
// cout << "MeshTestUtility: local coefficients for cell " << cellIndex << ":\n" << fineSolutionCoefficients;
// }
unsigned sideCount = cell->getSideCount();
for (unsigned sideOrdinal=0; sideOrdinal<sideCount; sideOrdinal++)
{
FieldContainer<double> fineSideRefPoints, fineCellRefPoints, coarseSideRefPoints, coarseCellRefPoints;
bool hasCoarserNeighbor = determineRefTestPointsForNeighbors(meshTopo, cell, sideOrdinal, fineSideRefPoints, fineCellRefPoints, coarseSideRefPoints, coarseCellRefPoints);
if (!hasCoarserNeighbor) continue;
pair<GlobalIndexType, unsigned> neighborInfo = cell->getNeighborInfo(sideOrdinal, meshTopo);
CellPtr neighborCell = meshTopo->getCell(neighborInfo.first);
unsigned numTestPoints = coarseCellRefPoints.dimension(0);
// cout << "testing neighbor agreement between cell " << cellIndex << " and " << neighborCell->cellIndex() << endl;
// if we get here, the cell has a neighbor on this side, and is at least as fine as that neighbor.
BasisCachePtr fineSideBasisCache = fineCellBasisCache->getSideBasisCache(sideOrdinal);
fineCellBasisCache->setRefCellPoints(fineCellRefPoints);
BasisCachePtr coarseCellBasisCache = BasisCache::basisCacheForCell(mesh, neighborInfo.first);
BasisCachePtr coarseSideBasisCache = coarseCellBasisCache->getSideBasisCache(neighborInfo.second);
coarseCellBasisCache->setRefCellPoints(coarseCellRefPoints);
bool hasSidePoints = (fineSideRefPoints.size() > 0);
if (hasSidePoints)
{
fineSideBasisCache->setRefCellPoints(fineSideRefPoints);
coarseSideBasisCache->setRefCellPoints(coarseSideRefPoints);
}
// sanity check: do physical points match?
FieldContainer<double> fineCellPhysicalCubaturePoints = fineCellBasisCache->getPhysicalCubaturePoints();
FieldContainer<double> coarseCellPhysicalCubaturePoints = coarseCellBasisCache->getPhysicalCubaturePoints();
double tol = 1e-14;
double maxDiff = 0;
if (! fcsAgree(coarseCellPhysicalCubaturePoints, fineCellPhysicalCubaturePoints, tol, maxDiff) )
{
cout << "ERROR: MeshTestUtility::neighborBasesAgreeOnSides internal error: fine and coarse cell cubature points do not agree.\n";
success = false;
continue;
}
if (hasSidePoints)
{
FieldContainer<double> fineSidePhysicalCubaturePoints = fineSideBasisCache->getPhysicalCubaturePoints();
FieldContainer<double> coarseSidePhysicalCubaturePoints = coarseSideBasisCache->getPhysicalCubaturePoints();
double tol = 1e-14;
double maxDiff = 0;
if (! fcsAgree(fineSidePhysicalCubaturePoints, fineCellPhysicalCubaturePoints, tol, maxDiff) )
{
cout << "ERROR: MeshTestUtility::neighborBasesAgreeOnSides internal error: fine side and cell cubature points do not agree.\n";
success = false;
continue;
}
if (! fcsAgree(coarseSidePhysicalCubaturePoints, coarseCellPhysicalCubaturePoints, tol, maxDiff) )
{
cout << "ERROR: MeshTestUtility::neighborBasesAgreeOnSides internal error: coarse side and cell cubature points do not agree.\n";
success = false;
continue;
}
if (! fcsAgree(coarseSidePhysicalCubaturePoints, fineSidePhysicalCubaturePoints, tol, maxDiff) )
{
cout << "ERROR: MeshTestUtility::neighborBasesAgreeOnSides internal error: fine and coarse side cubature points do not agree.\n";
success = false;
continue;
}
}
ElementTypePtr coarseElementType = mesh->getElementType(neighborInfo.first);
DofOrderingPtr coarseElemTrialOrder = coarseElementType->trialOrderPtr;
FieldContainer<double> coarseSolutionCoefficients(coarseElemTrialOrder->totalDofs());
//.........这里部分代码省略.........
示例6: determineRefTestPointsForNeighbors
//.........这里部分代码省略.........
else
{
return false;
}
}
pair<GlobalIndexType, unsigned> neighborInfo = fineCell->getNeighborInfo(sideOrdinal, meshTopo);
if (neighborInfo.first == -1)
{
// boundary
return false;
}
CellPtr neighborCell = meshTopo->getCell(neighborInfo.first);
if (neighborCell->isParent(meshTopo))
{
return false; // fineCell isn't the finer of the two...
}
CellTopoPtr fineSideTopo = fineCell->topology()->getSubcell(sideDim, sideOrdinal);
CubatureFactory cubFactory;
int cubDegree = 4; // fairly arbitrary choice: enough to get a decent number of test points...
Teuchos::RCP<Cubature<double> > fineSideTopoCub = cubFactory.create(fineSideTopo, cubDegree);
int numCubPoints = fineSideTopoCub->getNumPoints();
FieldContainer<double> cubPoints(numCubPoints, sideDim);
FieldContainer<double> cubWeights(numCubPoints); // we neglect these...
fineSideTopoCub->getCubature(cubPoints, cubWeights);
FieldContainer<double> sideRefCellNodes(fineSideTopo->getNodeCount(),sideDim);
CamelliaCellTools::refCellNodesForTopology(sideRefCellNodes, fineSideTopo);
int numTestPoints = numCubPoints + fineSideTopo->getNodeCount();
FieldContainer<double> testPoints(numTestPoints, sideDim);
for (int ptOrdinal=0; ptOrdinal<testPoints.dimension(0); ptOrdinal++)
{
if (ptOrdinal<fineSideTopo->getNodeCount())
{
for (int d=0; d<sideDim; d++)
{
testPoints(ptOrdinal,d) = sideRefCellNodes(ptOrdinal,d);
}
}
else
{
for (int d=0; d<sideDim; d++)
{
testPoints(ptOrdinal,d) = cubPoints(ptOrdinal-fineSideTopo->getNodeCount(),d);
}
}
}
fineSideRefPoints = testPoints;
fineCellRefPoints.resize(numTestPoints, spaceDim);
CamelliaCellTools::mapToReferenceSubcell(fineCellRefPoints, testPoints, sideDim, sideOrdinal, fineCell->topology());
CellTopoPtr coarseSideTopo = neighborCell->topology()->getSubcell(sideDim, neighborInfo.second);
unsigned fineSideAncestorPermutation = fineCell->ancestralPermutationForSubcell(sideDim, sideOrdinal, meshTopo);
unsigned coarseSidePermutation = neighborCell->subcellPermutation(sideDim, neighborInfo.second);
unsigned coarseSideAncestorPermutationInverse = CamelliaCellTools::permutationInverse(coarseSideTopo, coarseSidePermutation);
unsigned composedPermutation = CamelliaCellTools::permutationComposition(coarseSideTopo, coarseSideAncestorPermutationInverse, fineSideAncestorPermutation); // goes from coarse ordering to fine.
RefinementBranch fineRefBranch = fineCell->refinementBranchForSide(sideOrdinal, meshTopo);
FieldContainer<double> fineSideNodes(fineSideTopo->getNodeCount(), sideDim); // relative to the ancestral cell whose neighbor is compatible
if (fineRefBranch.size() == 0)
{
CamelliaCellTools::refCellNodesForTopology(fineSideNodes, coarseSideTopo, composedPermutation);
}
else
{
FieldContainer<double> ancestralSideNodes(coarseSideTopo->getNodeCount(), sideDim);
CamelliaCellTools::refCellNodesForTopology(ancestralSideNodes, coarseSideTopo, composedPermutation);
RefinementBranch fineSideRefBranch = RefinementPattern::sideRefinementBranch(fineRefBranch, sideOrdinal);
fineSideNodes = RefinementPattern::descendantNodes(fineSideRefBranch, ancestralSideNodes);
}
BasisCachePtr sideTopoCache = Teuchos::rcp( new BasisCache(fineSideTopo, 1, false) );
sideTopoCache->setRefCellPoints(testPoints);
// add cell dimension
fineSideNodes.resize(1,fineSideNodes.dimension(0), fineSideNodes.dimension(1));
sideTopoCache->setPhysicalCellNodes(fineSideNodes, vector<GlobalIndexType>(), false);
coarseSideRefPoints = sideTopoCache->getPhysicalCubaturePoints();
// strip off the cell dimension:
coarseSideRefPoints.resize(coarseSideRefPoints.dimension(1),coarseSideRefPoints.dimension(2));
coarseCellRefPoints.resize(numTestPoints,spaceDim);
CamelliaCellTools::mapToReferenceSubcell(coarseCellRefPoints, coarseSideRefPoints, sideDim, neighborInfo.second, neighborCell->topology());
return true; // containers filled....
}