当前位置: 首页>>代码示例>>C++>>正文


C++ BasisCachePtr::getCellMeasures方法代码示例

本文整理汇总了C++中BasisCachePtr::getCellMeasures方法的典型用法代码示例。如果您正苦于以下问题:C++ BasisCachePtr::getCellMeasures方法的具体用法?C++ BasisCachePtr::getCellMeasures怎么用?C++ BasisCachePtr::getCellMeasures使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在BasisCachePtr的用法示例。


在下文中一共展示了BasisCachePtr::getCellMeasures方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: main


//.........这里部分代码省略.........
    cout << "Integral of pressure: " << p_avg << endl;

  // integrate massFlux over each element (a test):
  // fake a new bilinear form so we can integrate against 1
  VarPtr testOne = varFactory.testVar("1",CONSTANT_SCALAR);
  BFPtr fakeBF = Teuchos::rcp( new BF(varFactory) );
  LinearTermPtr massFluxTerm = massFlux * testOne;

  CellTopoPtrLegacy quadTopoPtr = Teuchos::rcp(new shards::CellTopology(shards::getCellTopologyData<shards::Quadrilateral<4> >() ));
  DofOrderingFactory dofOrderingFactory(fakeBF);
  int fakeTestOrder = H1Order;
  DofOrderingPtr testOrdering = dofOrderingFactory.testOrdering(fakeTestOrder, *quadTopoPtr);

  int testOneIndex = testOrdering->getDofIndex(testOne->ID(),0);
  vector< ElementTypePtr > elemTypes = mesh->elementTypes(); // global element types
  map<int, double> massFluxIntegral; // cellID -> integral
  double maxMassFluxIntegral = 0.0;
  double totalMassFlux = 0.0;
  double totalAbsMassFlux = 0.0;
  double maxCellMeasure = 0;
  double minCellMeasure = 1;
  for (vector< ElementTypePtr >::iterator elemTypeIt = elemTypes.begin(); elemTypeIt != elemTypes.end(); elemTypeIt++)
  {
    ElementTypePtr elemType = *elemTypeIt;
    vector< ElementPtr > elems = mesh->elementsOfTypeGlobal(elemType);
    vector<GlobalIndexType> cellIDs;
    for (int i=0; i<elems.size(); i++)
    {
      cellIDs.push_back(elems[i]->cellID());
    }
    FieldContainer<double> physicalCellNodes = mesh->physicalCellNodesGlobal(elemType);
    BasisCachePtr basisCache = Teuchos::rcp( new BasisCache(elemType,mesh,polyOrder) ); // enrich by trial space order
    basisCache->setPhysicalCellNodes(physicalCellNodes,cellIDs,true); // true: create side caches
    FieldContainer<double> cellMeasures = basisCache->getCellMeasures();
    FieldContainer<double> fakeRHSIntegrals(elems.size(),testOrdering->totalDofs());
    massFluxTerm->integrate(fakeRHSIntegrals,testOrdering,basisCache,true); // true: force side evaluation
    //      cout << "fakeRHSIntegrals:\n" << fakeRHSIntegrals;
    for (int i=0; i<elems.size(); i++)
    {
      int cellID = cellIDs[i];
      // pick out the ones for testOne:
      massFluxIntegral[cellID] = fakeRHSIntegrals(i,testOneIndex);
    }
    // find the largest:
    for (int i=0; i<elems.size(); i++)
    {
      int cellID = cellIDs[i];
      maxMassFluxIntegral = max(abs(massFluxIntegral[cellID]), maxMassFluxIntegral);
    }
    for (int i=0; i<elems.size(); i++)
    {
      int cellID = cellIDs[i];
      maxCellMeasure = max(maxCellMeasure,cellMeasures(i));
      minCellMeasure = min(minCellMeasure,cellMeasures(i));
      maxMassFluxIntegral = max(abs(massFluxIntegral[cellID]), maxMassFluxIntegral);
      totalMassFlux += massFluxIntegral[cellID];
      totalAbsMassFlux += abs( massFluxIntegral[cellID] );
    }
  }
  if (rank==0)
  {
    cout << "largest mass flux: " << maxMassFluxIntegral << endl;
    cout << "total mass flux: " << totalMassFlux << endl;
    cout << "sum of mass flux absolute value: " << totalAbsMassFlux << endl;
    cout << "largest h: " << sqrt(maxCellMeasure) << endl;
    cout << "smallest h: " << sqrt(minCellMeasure) << endl;
开发者ID:CamelliaDPG,项目名称:Camellia,代码行数:67,代码来源:NavierStokesCavityFlowContinuationAdaptive.cpp

示例2: testBestApproximationErrorComputation

bool HConvergenceStudyTests::testBestApproximationErrorComputation() {
  bool success = true;

  bool enrichVelocity = false; // true would be for the "compliant" norm, which isn't working well yet
  
  int minLogElements = 0, maxLogElements = minLogElements;
  int numCells1D = pow(2.0,minLogElements);
  int H1Order = 1;
  int pToAdd = 2;
  
  double tol = 1e-16;
  double Re = 40.0;
  
  VarFactory varFactory = VGPStokesFormulation::vgpVarFactory();
  VarPtr u1_vgp = varFactory.fieldVar(VGP_U1_S);
  VarPtr u2_vgp = varFactory.fieldVar(VGP_U2_S);
  VarPtr sigma11_vgp = varFactory.fieldVar(VGP_SIGMA11_S);
  VarPtr sigma12_vgp = varFactory.fieldVar(VGP_SIGMA12_S);
  VarPtr sigma21_vgp = varFactory.fieldVar(VGP_SIGMA21_S);
  VarPtr sigma22_vgp = varFactory.fieldVar(VGP_SIGMA22_S);
  VarPtr p_vgp = varFactory.fieldVar(VGP_P_S);
  
  VGPStokesFormulation stokesForm(1/Re);
  
  int numCellsFineMesh = 20; // for computing a zero-mean pressure
  int H1OrderFineMesh = 5;
  
  // define Kovasznay domain:
  FieldContainer<double> quadPointsKovasznay(4,2);
  
  // Domain from Evans Hughes for Navier-Stokes:
  quadPointsKovasznay(0,0) =  0.0; // x1
  quadPointsKovasznay(0,1) = -0.5; // y1
  quadPointsKovasznay(1,0) =  1.0;
  quadPointsKovasznay(1,1) = -0.5;
  quadPointsKovasznay(2,0) =  1.0;
  quadPointsKovasznay(2,1) =  0.5;
  quadPointsKovasznay(3,0) =  0.0;
  quadPointsKovasznay(3,1) =  0.5;
  
  FunctionPtr zero = Function::zero();
  bool dontEnhanceFluxes = false;
  VGPNavierStokesProblem zeroProblem = VGPNavierStokesProblem(Re, quadPointsKovasznay,
                                                              numCellsFineMesh, numCellsFineMesh,
                                                              H1OrderFineMesh, pToAdd,
                                                              zero, zero, zero, enrichVelocity, dontEnhanceFluxes);
  
  FunctionPtr u1_exact, u2_exact, p_exact;
  NavierStokesFormulation::setKovasznay(Re, zeroProblem.mesh(), u1_exact, u2_exact, p_exact);
  
  
  VGPNavierStokesProblem problem = VGPNavierStokesProblem(Re,quadPointsKovasznay,
                                                          numCells1D,numCells1D,
                                                          H1Order, pToAdd,
                                                          u1_exact, u2_exact, p_exact, enrichVelocity, dontEnhanceFluxes);

  HConvergenceStudy study(problem.exactSolution(),
                          problem.mesh()->bilinearForm(),
                          problem.exactSolution()->rhs(),
                          problem.backgroundFlow()->bc(),
                          problem.bf()->graphNorm(),
                          minLogElements, maxLogElements,
                          H1Order, pToAdd, false, false, false);
  study.setReportRelativeErrors(false); // we want absolute errors

  Teuchos::RCP<Mesh> mesh = problem.mesh();
  
  int cubatureDegreeEnrichment = 10;
  
  int L2Order = H1Order - 1;
  int meshCubatureDegree = L2Order + H1Order + pToAdd;

  study.setCubatureDegreeForExact(cubatureDegreeEnrichment + meshCubatureDegree);
  
  FunctionPtr f = u1_exact;
  int trialID = u1_vgp->ID();
  {
    double fIntegral = f->integrate(mesh,cubatureDegreeEnrichment);
//    cout << "testBestApproximationErrorComputation: integral of f on whole mesh = " << fIntegral << endl;
    
    double l2ErrorOfAverage = (Function::constant(fIntegral) - f)->l2norm(mesh,cubatureDegreeEnrichment);
//    cout << "testBestApproximationErrorComputation: l2 error of fIntegral: " << l2ErrorOfAverage << endl;
    
    ElementTypePtr elemType = mesh->elementTypes()[0];
    vector<GlobalIndexType> cellIDs = mesh->cellIDsOfTypeGlobal(elemType);
    
    bool testVsTest = false;
    BasisCachePtr basisCache = Teuchos::rcp( new BasisCache(elemType, mesh, testVsTest, cubatureDegreeEnrichment) );
    basisCache->setPhysicalCellNodes(mesh->physicalCellNodesGlobal(elemType), cellIDs, false); // false: no side cache

    FieldContainer<double> projectionValues(cellIDs.size());
    f->integrate(projectionValues, basisCache);
    FieldContainer<double> cellMeasures = basisCache->getCellMeasures();
    
    for (int i=0; i<projectionValues.size(); i++) {
      projectionValues(i) /= cellMeasures(i);
    }
    
    // since we're not worried about the actual solution values at all, just use a single zero solution:
    vector< SolutionPtr > solutions;
//.........这里部分代码省略.........
开发者ID:Kun-Qu,项目名称:Camellia,代码行数:101,代码来源:HConvergenceStudyTests.cpp

示例3: main


//.........这里部分代码省略.........
        if (transient)
          outfile << "TransientConfusion_" << refIndex << "_" << timestepCount;
        else
          outfile << "TransientConfusion_" << refIndex;
        solution->writeToVTK(outfile.str(), 5);
      }

      //////////////////////////////////////////////////////////////////////////
      // Check conservation by testing against one
      //////////////////////////////////////////////////////////////////////////
      VarPtr testOne = varFactory.testVar("1", CONSTANT_SCALAR);
      // Create a fake bilinear form for the testing
      BFPtr fakeBF = Teuchos::rcp( new BF(varFactory) );
      // Define our mass flux
      FunctionPtr flux_current_time = Teuchos::rcp( new PreviousSolutionFunction(solution, beta_n_u_minus_sigma_n) );
      FunctionPtr delta_u = Teuchos::rcp( new PreviousSolutionFunction(flowResidual, u) );
      LinearTermPtr surfaceFlux = -1.0 * flux_current_time * testOne;
      LinearTermPtr volumeChange = invDt * delta_u * testOne;
      LinearTermPtr massFluxTerm;
      if (transient)
      {
        massFluxTerm = volumeChange;
        // massFluxTerm->addTerm(surfaceFlux);
      }
      else
      {
        massFluxTerm = surfaceFlux;
      }
      // cout << "surface case = " << surfaceFlux->summands()[0].first->boundaryValueOnly() << " volume case = " << volumeChange->summands()[0].first->boundaryValueOnly() << endl;

      // FunctionPtr massFlux= Teuchos::rcp( new PreviousSolutionFunction(solution, beta_n_u_minus_sigma_n) );
      // LinearTermPtr massFluxTerm = massFlux * testOne;

      Teuchos::RCP<shards::CellTopology> quadTopoPtr = Teuchos::rcp(new shards::CellTopology(shards::getCellTopologyData<shards::Quadrilateral<4> >() ));
      DofOrderingFactory dofOrderingFactory(fakeBF);
      int fakeTestOrder = H1Order;
      DofOrderingPtr testOrdering = dofOrderingFactory.testOrdering(fakeTestOrder, *quadTopoPtr);

      int testOneIndex = testOrdering->getDofIndex(testOne->ID(),0);
      vector< ElementTypePtr > elemTypes = mesh->elementTypes(); // global element types
      map<int, double> massFluxIntegral; // cellID -> integral
      double maxMassFluxIntegral = 0.0;
      double totalMassFlux = 0.0;
      double totalAbsMassFlux = 0.0;
      for (vector< ElementTypePtr >::iterator elemTypeIt = elemTypes.begin(); elemTypeIt != elemTypes.end(); elemTypeIt++) 
      {
        ElementTypePtr elemType = *elemTypeIt;
        vector< ElementPtr > elems = mesh->elementsOfTypeGlobal(elemType);
        vector<int> cellIDs;
        for (int i=0; i<elems.size(); i++) {
          cellIDs.push_back(elems[i]->cellID());
        }
        FieldContainer<double> physicalCellNodes = mesh->physicalCellNodesGlobal(elemType);
        BasisCachePtr basisCache = Teuchos::rcp( new BasisCache(elemType,mesh) );
        basisCache->setPhysicalCellNodes(physicalCellNodes,cellIDs,true); // true: create side caches
        FieldContainer<double> cellMeasures = basisCache->getCellMeasures();
        FieldContainer<double> fakeRHSIntegrals(elems.size(),testOrdering->totalDofs());
        massFluxTerm->integrate(fakeRHSIntegrals,testOrdering,basisCache,true); // true: force side evaluation
        for (int i=0; i<elems.size(); i++) {
          int cellID = cellIDs[i];
          // pick out the ones for testOne:
          massFluxIntegral[cellID] = fakeRHSIntegrals(i,testOneIndex);
        }
        // find the largest:
        for (int i=0; i<elems.size(); i++) {
          int cellID = cellIDs[i];
          maxMassFluxIntegral = max(abs(massFluxIntegral[cellID]), maxMassFluxIntegral);
        }
        for (int i=0; i<elems.size(); i++) {
          int cellID = cellIDs[i];
          maxMassFluxIntegral = max(abs(massFluxIntegral[cellID]), maxMassFluxIntegral);
          totalMassFlux += massFluxIntegral[cellID];
          totalAbsMassFlux += abs( massFluxIntegral[cellID] );
        }
      }

      // Print results from processor with rank 0
      if (rank == 0)
      {
        cout << "largest mass flux: " << maxMassFluxIntegral << endl;
        cout << "total mass flux: " << totalMassFlux << endl;
        cout << "sum of mass flux absolute value: " << totalAbsMassFlux << endl;
      }

      prevTimeFlow->setSolution(solution); // reset previous time solution to current time sol
      timestepCount++;
    }

    if (refIndex < numRefs){
      if (rank==0){
        cout << "Performing refinement number " << refIndex << endl;
      }     
      refinementStrategy->refine(rank==0);    
      // RESET solution every refinement - make sure discretization error doesn't creep in
      // prevTimeFlow->projectOntoMesh(functionMap);
    }
  }

  return 0;
}
开发者ID:Kun-Qu,项目名称:Camellia,代码行数:101,代码来源:TransientConfusion.cpp

示例4: main


//.........这里部分代码省略.........
  }

  ////////////////////////////////////////////////////////////////////
  // DEFINE REFINEMENT STRATEGY
  ////////////////////////////////////////////////////////////////////
  Teuchos::RCP<RefinementStrategy> refinementStrategy;
  refinementStrategy = Teuchos::rcp(new RefinementStrategy(solution,energyThreshold));

  ////////////////////////////////////////////////////////////////////
  // SOLVE
  ////////////////////////////////////////////////////////////////////

  for (int refIndex=0; refIndex<=numRefs; refIndex++)
  {
    double L2Update = 1e7;
    int iterCount = 0;
    while (L2Update > nonlinearRelativeEnergyTolerance && iterCount < maxNewtonIterations)
    {
      solution->solve();
      L2Update = solution->L2NormOfSolutionGlobal(u->ID());
      cout << "L2 Norm of Update = " << L2Update << endl;
      // backgroundFlow->clear();
      backgroundFlow->addSolution(solution, newtonStepSize);
      iterCount++;
    }
    cout << endl;

    // check conservation
    VarPtr testOne = varFactory.testVar("1", CONSTANT_SCALAR);
    // Create a fake bilinear form for the testing
    BFPtr fakeBF = Teuchos::rcp( new BF(varFactory) );
    // Define our mass flux
    FunctionPtr massFlux = Teuchos::rcp( new PreviousSolutionFunction(solution, fhat) );
    LinearTermPtr massFluxTerm = massFlux * testOne;

    Teuchos::RCP<shards::CellTopology> quadTopoPtr = Teuchos::rcp(new shards::CellTopology(shards::getCellTopologyData<shards::Quadrilateral<4> >() ));
    DofOrderingFactory dofOrderingFactory(fakeBF);
    int fakeTestOrder = H1Order;
    DofOrderingPtr testOrdering = dofOrderingFactory.testOrdering(fakeTestOrder, *quadTopoPtr);

    int testOneIndex = testOrdering->getDofIndex(testOne->ID(),0);
    vector< ElementTypePtr > elemTypes = mesh->elementTypes(); // global element types
    map<int, double> massFluxIntegral; // cellID -> integral
    double maxMassFluxIntegral = 0.0;
    double totalMassFlux = 0.0;
    double totalAbsMassFlux = 0.0;
    for (vector< ElementTypePtr >::iterator elemTypeIt = elemTypes.begin(); elemTypeIt != elemTypes.end(); elemTypeIt++)
    {
      ElementTypePtr elemType = *elemTypeIt;
      vector< ElementPtr > elems = mesh->elementsOfTypeGlobal(elemType);
      vector<int> cellIDs;
      for (int i=0; i<elems.size(); i++)
      {
        cellIDs.push_back(elems[i]->cellID());
      }
      FieldContainer<double> physicalCellNodes = mesh->physicalCellNodesGlobal(elemType);
      BasisCachePtr basisCache = Teuchos::rcp( new BasisCache(elemType,mesh) );
      basisCache->setPhysicalCellNodes(physicalCellNodes,cellIDs,true); // true: create side caches
      FieldContainer<double> cellMeasures = basisCache->getCellMeasures();
      FieldContainer<double> fakeRHSIntegrals(elems.size(),testOrdering->totalDofs());
      massFluxTerm->integrate(fakeRHSIntegrals,testOrdering,basisCache,true); // true: force side evaluation
      for (int i=0; i<elems.size(); i++)
      {
        int cellID = cellIDs[i];
        // pick out the ones for testOne:
        massFluxIntegral[cellID] = fakeRHSIntegrals(i,testOneIndex);
      }
      // find the largest:
      for (int i=0; i<elems.size(); i++)
      {
        int cellID = cellIDs[i];
        maxMassFluxIntegral = max(abs(massFluxIntegral[cellID]), maxMassFluxIntegral);
      }
      for (int i=0; i<elems.size(); i++)
      {
        int cellID = cellIDs[i];
        maxMassFluxIntegral = max(abs(massFluxIntegral[cellID]), maxMassFluxIntegral);
        totalMassFlux += massFluxIntegral[cellID];
        totalAbsMassFlux += abs( massFluxIntegral[cellID] );
      }
    }
    if (rank==0)
    {
      cout << endl;
      cout << "largest mass flux: " << maxMassFluxIntegral << endl;
      cout << "total mass flux: " << totalMassFlux << endl;
      cout << "sum of mass flux absolute value: " << totalAbsMassFlux << endl;
      cout << endl;

      stringstream outfile;
      outfile << "burgers_" << refIndex;
      backgroundFlow->writeToVTK(outfile.str(), 5);
    }

    if (refIndex < numRefs)
      refinementStrategy->refine(rank==0); // print to console on rank 0
  }

  return 0;
}
开发者ID:CamelliaDPG,项目名称:Camellia,代码行数:101,代码来源:InviscidBurgers.cpp


注:本文中的BasisCachePtr::getCellMeasures方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。