本文整理汇总了C++中BasisCachePtr::getSideIndex方法的典型用法代码示例。如果您正苦于以下问题:C++ BasisCachePtr::getSideIndex方法的具体用法?C++ BasisCachePtr::getSideIndex怎么用?C++ BasisCachePtr::getSideIndex使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类BasisCachePtr
的用法示例。
在下文中一共展示了BasisCachePtr::getSideIndex方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: values
void SideParityFunction::values(Intrepid::FieldContainer<double> &values, BasisCachePtr sideBasisCache)
{
this->CHECK_VALUES_RANK(values);
int numCells = values.dimension(0);
int numPoints = values.dimension(1);
int sideIndex = sideBasisCache->getSideIndex();
if (sideIndex == -1)
{
TEUCHOS_TEST_FOR_EXCEPTION(true, std::invalid_argument, "non-sideBasisCache passed into SideParityFunction");
}
if (sideBasisCache->getCellSideParities().size() > 0)
{
// then we'll use this, and won't require that mesh and cellIDs are set
if (sideBasisCache->getCellSideParities().dimension(0) != numCells)
{
TEUCHOS_TEST_FOR_EXCEPTION(true, std::invalid_argument, "sideBasisCache->getCellSideParities() is non-empty, but the cell dimension doesn't match that of the values FieldContainer.");
}
for (int cellOrdinal=0; cellOrdinal<numCells; cellOrdinal++)
{
int parity = sideBasisCache->getCellSideParities()(cellOrdinal,sideIndex);
for (int ptOrdinal=0; ptOrdinal<numPoints; ptOrdinal++)
{
values(cellOrdinal,ptOrdinal) = parity;
}
}
}
else
{
vector<GlobalIndexType> cellIDs = sideBasisCache->cellIDs();
if (cellIDs.size() != numCells)
{
TEUCHOS_TEST_FOR_EXCEPTION(true, std::invalid_argument, "cellIDs.size() != numCells");
}
Teuchos::RCP<Mesh> mesh = sideBasisCache->mesh();
if (! mesh.get())
{
TEUCHOS_TEST_FOR_EXCEPTION(true, std::invalid_argument, "mesh unset in BasisCache.");
}
for (int cellIndex=0; cellIndex<numCells; cellIndex++)
{
int parity = mesh->cellSideParitiesForCell(cellIDs[cellIndex])(0,sideIndex);
for (int ptIndex=0; ptIndex<numPoints; ptIndex++)
{
values(cellIndex,ptIndex) = parity;
}
}
}
}
示例2: solutionValues
void ExactSolution::solutionValues(FieldContainer<double> &values, int trialID, BasisCachePtr basisCache) {
if (_exactFunctions.find(trialID) != _exactFunctions.end() ) {
_exactFunctions[trialID]->values(values,basisCache);
return;
}
// TODO: change ExactSolution::solutionValues (below) to take a *const* points FieldContainer, to avoid this copy:
FieldContainer<double> points = basisCache->getPhysicalCubaturePoints();
if (basisCache->getSideIndex() >= 0) {
FieldContainer<double> unitNormals = basisCache->getSideNormals();
this->solutionValues(values,trialID,points,unitNormals);
} else {
this->solutionValues(values,trialID,points);
}
}
示例3: projectFunctionOntoBasis
void Projector::projectFunctionOntoBasis(FieldContainer<double> &basisCoefficients, FunctionPtr fxn,
BasisPtr basis, BasisCachePtr basisCache, IPPtr ip, VarPtr v,
set<int> fieldIndicesToSkip) {
CellTopoPtr cellTopo = basis->domainTopology();
DofOrderingPtr dofOrderPtr = Teuchos::rcp(new DofOrdering());
if (! fxn.get()) {
TEUCHOS_TEST_FOR_EXCEPTION(true, std::invalid_argument, "fxn cannot be null!");
}
int cardinality = basis->getCardinality();
int numCells = basisCache->getPhysicalCubaturePoints().dimension(0);
int numDofs = cardinality - fieldIndicesToSkip.size();
if (numDofs==0) {
// we're skipping all the fields, so just initialize basisCoefficients to 0 and return
basisCoefficients.resize(numCells,cardinality);
basisCoefficients.initialize(0);
return;
}
FieldContainer<double> gramMatrix(numCells,cardinality,cardinality);
FieldContainer<double> ipVector(numCells,cardinality);
// fake a DofOrdering
DofOrderingPtr dofOrdering = Teuchos::rcp( new DofOrdering );
if (! basisCache->isSideCache()) {
dofOrdering->addEntry(v->ID(), basis, v->rank());
} else {
dofOrdering->addEntry(v->ID(), basis, v->rank(), basisCache->getSideIndex());
}
ip->computeInnerProductMatrix(gramMatrix, dofOrdering, basisCache);
ip->computeInnerProductVector(ipVector, v, fxn, dofOrdering, basisCache);
// cout << "physical points for projection:\n" << basisCache->getPhysicalCubaturePoints();
// cout << "gramMatrix:\n" << gramMatrix;
// cout << "ipVector:\n" << ipVector;
map<int,int> oldToNewIndices;
if (fieldIndicesToSkip.size() > 0) {
// the code to do with fieldIndicesToSkip might not be terribly efficient...
// (but it's not likely to be called too frequently)
int i_indices_skipped = 0;
for (int i=0; i<cardinality; i++) {
int new_index;
if (fieldIndicesToSkip.find(i) != fieldIndicesToSkip.end()) {
i_indices_skipped++;
new_index = -1;
} else {
new_index = i - i_indices_skipped;
}
oldToNewIndices[i] = new_index;
}
FieldContainer<double> gramMatrixFiltered(numCells,numDofs,numDofs);
FieldContainer<double> ipVectorFiltered(numCells,numDofs);
// now filter out the values that we're to skip
for (int cellIndex=0; cellIndex<numCells; cellIndex++) {
for (int i=0; i<cardinality; i++) {
int i_filtered = oldToNewIndices[i];
if (i_filtered == -1) {
continue;
}
ipVectorFiltered(cellIndex,i_filtered) = ipVector(cellIndex,i);
for (int j=0; j<cardinality; j++) {
int j_filtered = oldToNewIndices[j];
if (j_filtered == -1) {
continue;
}
gramMatrixFiltered(cellIndex,i_filtered,j_filtered) = gramMatrix(cellIndex,i,j);
}
}
}
// cout << "gramMatrixFiltered:\n" << gramMatrixFiltered;
// cout << "ipVectorFiltered:\n" << ipVectorFiltered;
gramMatrix = gramMatrixFiltered;
ipVector = ipVectorFiltered;
}
for (int cellIndex=0; cellIndex<numCells; cellIndex++){
// TODO: rewrite to take advantage of SerialDenseWrapper...
Epetra_SerialDenseSolver solver;
Epetra_SerialDenseMatrix A(Copy,
&gramMatrix(cellIndex,0,0),
gramMatrix.dimension(2),
gramMatrix.dimension(2),
gramMatrix.dimension(1)); // stride -- fc stores in row-major order (a.o.t. SDM)
Epetra_SerialDenseVector b(Copy,
&ipVector(cellIndex,0),
ipVector.dimension(1));
Epetra_SerialDenseVector x(gramMatrix.dimension(1));
solver.SetMatrix(A);
int info = solver.SetVectors(x,b);
//.........这里部分代码省略.........
示例4: values
void values(FieldContainer<double> &values, BasisCachePtr basisCache)
{
// sets values(_cellIndex,P,D)
TEUCHOS_TEST_FOR_EXCEPTION(_cellIndex == -1, std::invalid_argument, "must call setCellIndex before calling values!");
// cout << "_basisCoefficients:\n" << _basisCoefficients;
BasisCachePtr spaceTimeBasisCache;
if (basisCache->cellTopologyIsSpaceTime())
{
// then we require that the basisCache provided be a space-time basis cache
SpaceTimeBasisCache* spaceTimeCache = dynamic_cast<SpaceTimeBasisCache*>(basisCache.get());
TEUCHOS_TEST_FOR_EXCEPTION(!spaceTimeCache, std::invalid_argument, "space-time requires a SpaceTimeBasisCache");
spaceTimeBasisCache = basisCache;
basisCache = spaceTimeCache->getSpatialBasisCache();
}
int numDofs = _basis->getCardinality();
int spaceDim = basisCache->getSpaceDim();
bool basisIsVolumeBasis = (spaceDim == _basis->domainTopology()->getDimension());
bool useCubPointsSideRefCell = basisIsVolumeBasis && basisCache->isSideCache();
int numPoints = values.dimension(1);
// check if we're taking a temporal derivative
int component;
Intrepid::EOperator relatedOp = BasisEvaluation::relatedOperator(_op, _basis->functionSpace(), spaceDim, component);
if ((relatedOp == Intrepid::OPERATOR_GRAD) && (component==spaceDim)) {
// then we are taking the temporal part of the Jacobian of the reference to curvilinear-reference space
// based on our assumptions that curvilinearity is just in the spatial direction (and is orthogonally extruded in the
// temporal direction), this is always the identity.
for (int ptIndex=0; ptIndex<numPoints; ptIndex++)
{
for (int d=0; d<values.dimension(2); d++)
{
if (d < spaceDim)
values(_cellIndex,ptIndex,d) = 0.0;
else
values(_cellIndex,ptIndex,d) = 1.0;
}
}
return;
}
constFCPtr transformedValues = basisCache->getTransformedValues(_basis, _op, useCubPointsSideRefCell);
// transformedValues has dimensions (C,F,P,[D,D])
// therefore, the rank of the sum is transformedValues->rank() - 3
int rank = transformedValues->rank() - 3;
TEUCHOS_TEST_FOR_EXCEPTION(rank != values.rank()-2, std::invalid_argument, "values rank is incorrect.");
int spaceTimeSideOrdinal = (spaceTimeBasisCache != Teuchos::null) ? spaceTimeBasisCache->getSideIndex() : -1;
// I'm pretty sure much of this treatment of the time dimension could be simplified by taking advantage of SpaceTimeBasisCache::getTemporalBasisCache()...
double t0 = -1, t1 = -1;
if ((spaceTimeSideOrdinal != -1) && (!spaceTimeBasisCache->cellTopology()->sideIsSpatial(spaceTimeSideOrdinal)))
{
unsigned sideTime0 = spaceTimeBasisCache->cellTopology()->getTemporalSideOrdinal(0);
unsigned sideTime1 = spaceTimeBasisCache->cellTopology()->getTemporalSideOrdinal(1);
// get first node of each of the time-orthogonal sides, and use that to determine t0 and t1:
unsigned spaceTimeNodeTime0 = spaceTimeBasisCache->cellTopology()->getNodeMap(spaceDim, sideTime0, 0);
unsigned spaceTimeNodeTime1 = spaceTimeBasisCache->cellTopology()->getNodeMap(spaceDim, sideTime1, 0);
t0 = spaceTimeBasisCache->getPhysicalCellNodes()(_cellIndex,spaceTimeNodeTime0,spaceDim);
t1 = spaceTimeBasisCache->getPhysicalCellNodes()(_cellIndex,spaceTimeNodeTime1,spaceDim);
}
// initialize the values we're responsible for setting
if (_op == OP_VALUE)
{
for (int ptIndex=0; ptIndex<numPoints; ptIndex++)
{
for (int d=0; d<values.dimension(2); d++)
{
if (d < spaceDim)
values(_cellIndex,ptIndex,d) = 0.0;
else if ((spaceTimeBasisCache != Teuchos::null) && (spaceTimeSideOrdinal == -1))
values(_cellIndex,ptIndex,spaceDim) = spaceTimeBasisCache->getPhysicalCubaturePoints()(_cellIndex,ptIndex,spaceDim);
else if ((spaceTimeBasisCache != Teuchos::null) && (spaceTimeSideOrdinal != -1))
{
if (spaceTimeBasisCache->cellTopology()->sideIsSpatial(spaceTimeSideOrdinal))
{
values(_cellIndex,ptIndex,spaceDim) = spaceTimeBasisCache->getPhysicalCubaturePoints()(_cellIndex,ptIndex,spaceDim-1);
}
else
{
double temporalPoint;
unsigned temporalNode = spaceTimeBasisCache->cellTopology()->getTemporalComponentSideOrdinal(spaceTimeSideOrdinal);
if (temporalNode==0)
temporalPoint = t0;
else
temporalPoint = t1;
values(_cellIndex,ptIndex,spaceDim) = temporalPoint;
}
}
}
}
}
else if ((_op == OP_DX) || (_op == OP_DY) || (_op == OP_DZ))
{
for (int ptIndex=0; ptIndex<numPoints; ptIndex++)
//.........这里部分代码省略.........