当前位置: 首页>>代码示例>>C++>>正文


C++ BaseRenderer::GetDisplayGeometry方法代码示例

本文整理汇总了C++中BaseRenderer::GetDisplayGeometry方法的典型用法代码示例。如果您正苦于以下问题:C++ BaseRenderer::GetDisplayGeometry方法的具体用法?C++ BaseRenderer::GetDisplayGeometry怎么用?C++ BaseRenderer::GetDisplayGeometry使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在BaseRenderer的用法示例。


在下文中一共展示了BaseRenderer::GetDisplayGeometry方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1:

bool mitk::DisplayInteractor::Init(StateMachineAction*, InteractionEvent* interactionEvent)
{
  BaseRenderer* sender = interactionEvent->GetSender();
  InteractionPositionEvent* positionEvent = static_cast<InteractionPositionEvent*>(interactionEvent);

  Vector2D origin = sender->GetDisplayGeometry()->GetOriginInMM();
  double scaleFactorMMPerDisplayUnit = sender->GetDisplayGeometry()->GetScaleFactorMMPerDisplayUnit();
  m_StartDisplayCoordinate = positionEvent->GetPointerPositionOnScreen();
  m_LastDisplayCoordinate = positionEvent->GetPointerPositionOnScreen();
  m_CurrentDisplayCoordinate = positionEvent->GetPointerPositionOnScreen();
  m_StartCoordinateInMM = mitk::Point2D(
      (origin + m_StartDisplayCoordinate.GetVectorFromOrigin() * scaleFactorMMPerDisplayUnit).GetDataPointer());
  return true;
}
开发者ID:DiagnosisMultisystems,项目名称:MITK,代码行数:14,代码来源:mitkDisplayInteractor.cpp

示例2:

bool mitk::DisplayInteractor::Init(StateMachineAction*, InteractionEvent* interactionEvent)
{
  BaseRenderer* sender = interactionEvent->GetSender();
  InteractionPositionEvent* positionEvent = dynamic_cast<InteractionPositionEvent*>(interactionEvent);
  if (positionEvent == NULL)
  {
    MITK_WARN<< "DisplayVectorInteractor cannot process the event: " << interactionEvent->GetNameOfClass();
    return false;
  }

  Vector2D origin = sender->GetDisplayGeometry()->GetOriginInMM();
  double scaleFactorMMPerDisplayUnit = sender->GetDisplayGeometry()->GetScaleFactorMMPerDisplayUnit();
  m_StartDisplayCoordinate = positionEvent->GetPointerPositionOnScreen();
  m_LastDisplayCoordinate = positionEvent->GetPointerPositionOnScreen();
  m_CurrentDisplayCoordinate = positionEvent->GetPointerPositionOnScreen();
  m_StartCoordinateInMM = mitk::Point2D(
      (origin + m_StartDisplayCoordinate.GetVectorFromOrigin() * scaleFactorMMPerDisplayUnit).GetDataPointer());
  return true;
}
开发者ID:fmorency,项目名称:MITK,代码行数:19,代码来源:mitkDisplayInteractor.cpp

示例3: timeStep

bool
mitk::PlanarFigureInteractor::IsMousePositionAcceptableAsNewControlPoint(
    mitk::StateEvent const * stateEvent,
    const PlanarFigure* planarFigure )
{
  assert(stateEvent && planarFigure);

  BaseRenderer* renderer = stateEvent->GetEvent()->GetSender();

  assert(renderer);

  // Get the timestep to support 3D+t
  int timeStep( renderer->GetTimeStep( planarFigure ) );

  // Get current display position of the mouse
  //Point2D currentDisplayPosition = positionEvent->GetDisplayPosition();

  // Check if a previous point has been set
  bool tooClose = false;

  const Geometry2D *renderingPlane = renderer->GetCurrentWorldGeometry2D();

  mitk::Geometry2D *planarFigureGeometry =
    dynamic_cast< mitk::Geometry2D * >( planarFigure->GetGeometry( timeStep ) );

  Point2D point2D, correctedPoint;
  // Get the point2D from the positionEvent
  if ( !this->TransformPositionEventToPoint2D( stateEvent, point2D,
    planarFigureGeometry ) )
  {
    return false;
  }

  // apply the controlPoint constraints of the planarFigure to get the
  // coordinates that would actually be used.
  correctedPoint = const_cast<PlanarFigure*>( planarFigure )->ApplyControlPointConstraints( 0, point2D );

  // map the 2D coordinates of the new point to world-coordinates
  // and transform those to display-coordinates
  mitk::Point3D newPoint3D;
  planarFigureGeometry->Map( correctedPoint, newPoint3D );
  mitk::Point2D newDisplayPosition;
  renderingPlane->Map( newPoint3D, newDisplayPosition );
  renderer->GetDisplayGeometry()->WorldToDisplay( newDisplayPosition, newDisplayPosition );


  for( int i=0; i < (int)planarFigure->GetNumberOfControlPoints(); i++ )
  {
    if ( i != planarFigure->GetSelectedControlPoint() )
    {
      // Try to convert previous point to current display coordinates
      mitk::Point3D previousPoint3D;
      // map the 2D coordinates of the control-point to world-coordinates
      planarFigureGeometry->Map( planarFigure->GetControlPoint( i ), previousPoint3D );

      if ( renderer->GetDisplayGeometry()->Distance( previousPoint3D ) < 0.1 ) // ugly, but assert makes this work
      {
        mitk::Point2D previousDisplayPosition;
        // transform the world-coordinates into display-coordinates
        renderingPlane->Map( previousPoint3D, previousDisplayPosition );
        renderer->GetDisplayGeometry()->WorldToDisplay( previousDisplayPosition, previousDisplayPosition );

        //Calculate the distance. We use display-coordinates here to make
        // the check independent of the zoom-level of the rendering scene.
        double a = newDisplayPosition[0] - previousDisplayPosition[0];
        double b = newDisplayPosition[1] - previousDisplayPosition[1];

        // If point is to close, do not set a new point
        tooClose = (a * a + b * b < m_MinimumPointDistance );
      }
      if ( tooClose )
        return false; // abort loop early
    }
  }

  return !tooClose; // default
}
开发者ID:cewee,项目名称:MITK,代码行数:77,代码来源:mitkPlanarFigureInteractor.cpp

示例4: RotateToPoint

void SlicesRotator::RotateToPoint( SliceNavigationController *rotationPlaneSNC,
                                   SliceNavigationController *rotatedPlaneSNC,
                                   const Point3D &point, bool linked )
{
    MITK_WARN << "Deprecated function! Use SliceNavigationController::ReorientSlices() instead";

    SliceNavigationController *thirdSNC = NULL;

    SNCVector::iterator iter;
    for ( iter = m_RotatableSNCs.begin(); iter != m_RotatableSNCs.end(); ++iter )
    {
        if ( ((*iter) != rotationPlaneSNC)
                && ((*iter) != rotatedPlaneSNC) )
        {
            thirdSNC = *iter;
            break;
        }
    }

    if ( thirdSNC == NULL )
    {
        return;
    }

    const PlaneGeometry *rotationPlane = rotationPlaneSNC->GetCurrentPlaneGeometry();
    const PlaneGeometry *rotatedPlane = rotatedPlaneSNC->GetCurrentPlaneGeometry();
    const PlaneGeometry *thirdPlane = thirdSNC->GetCurrentPlaneGeometry();

    if ( (rotationPlane == NULL) || (rotatedPlane == NULL)
            || (thirdPlane == NULL) )
    {
        return;
    }

    if ( rotatedPlane->DistanceFromPlane( point ) < 0.001 )
    {
        // Skip irrelevant rotations
        return;
    }

    Point3D projectedPoint;
    Line3D intersection;
    Point3D rotationCenter;

    if ( !rotationPlane->Project( point, projectedPoint )
            || !rotationPlane->IntersectionLine( rotatedPlane, intersection )
            || !thirdPlane->IntersectionPoint( intersection, rotationCenter ) )
    {
        return;
    }

    // All pre-requirements are met; execute the rotation

    Point3D referencePoint = intersection.Project( projectedPoint );

    Vector3D toProjected = referencePoint - rotationCenter;
    Vector3D toCursor    = projectedPoint - rotationCenter;

    // cross product: | A x B | = |A| * |B| * sin(angle)
    Vector3D axisOfRotation;
    vnl_vector_fixed< ScalarType, 3 > vnlDirection =
        vnl_cross_3d( toCursor.GetVnlVector(), toProjected.GetVnlVector() );
    axisOfRotation.SetVnlVector( vnlDirection );

    // scalar product: A * B = |A| * |B| * cos(angle)
    // tan = sin / cos
    ScalarType angle = - atan2(
                           (double)(axisOfRotation.GetNorm()),
                           (double)(toCursor * toProjected) );
    angle *= 180.0 / vnl_math::pi;

    // create RotationOperation and apply to all SNCs that should be rotated
    RotationOperation op(OpROTATE, rotationCenter, axisOfRotation, angle);

    if ( !linked )
    {
        BaseRenderer *renderer = rotatedPlaneSNC->GetRenderer();
        if ( renderer == NULL )
        {
            return;
        }

        DisplayGeometry *displayGeometry = renderer->GetDisplayGeometry();

        Point2D point2DWorld, point2DDisplayPre, point2DDisplayPost;
        displayGeometry->Map( rotationCenter, point2DWorld );
        displayGeometry->WorldToDisplay( point2DWorld, point2DDisplayPre );

        TimeGeometry *timeGeometry= rotatedPlaneSNC->GetCreatedWorldGeometry();
        if ( !timeGeometry )
        {
            return;
        }

        timeGeometry->ExecuteOperation( &op );

        displayGeometry->Map( rotationCenter, point2DWorld );
        displayGeometry->WorldToDisplay( point2DWorld, point2DDisplayPost );
        Vector2D vector2DDisplayDiff = point2DDisplayPost - point2DDisplayPre;

//.........这里部分代码省略.........
开发者ID:nxzlj,项目名称:MITK,代码行数:101,代码来源:mitkSlicesRotator.cpp

示例5: DoRotationStep

bool SlicesRotator::DoRotationStep(Action*, const StateEvent* e)
{
    const DisplayPositionEvent* posEvent = dynamic_cast<const DisplayPositionEvent*>(e->GetEvent());
    if (!posEvent) return false;

    Point3D cursor = posEvent->GetWorldPosition();

    Vector3D toProjected = m_LastCursorPosition - m_CenterOfRotation;
    Vector3D toCursor    = cursor - m_CenterOfRotation;

    // cross product: | A x B | = |A| * |B| * sin(angle)
    Vector3D axisOfRotation;
    vnl_vector_fixed< ScalarType, 3 > vnlDirection = vnl_cross_3d( toCursor.GetVnlVector(), toProjected.GetVnlVector() );
    axisOfRotation.SetVnlVector(vnlDirection);

    // scalar product: A * B = |A| * |B| * cos(angle)
    // tan = sin / cos
    ScalarType angle = - atan2( (double)(axisOfRotation.GetNorm()), (double)(toCursor * toProjected) );
    angle *= 180.0 / vnl_math::pi;
    m_LastCursorPosition = cursor;

    // create RotationOperation and apply to all SNCs that should be rotated
    RotationOperation rotationOperation(OpROTATE, m_CenterOfRotation, axisOfRotation, angle);

    // iterate the OTHER slice navigation controllers: these are filled in DoDecideBetweenRotationAndSliceSelection
    for (SNCVector::iterator iter = m_SNCsToBeRotated.begin(); iter != m_SNCsToBeRotated.end(); ++iter)
    {
        //  - remember the center of rotation on the 2D display BEFORE rotation
        //  - execute rotation
        //  - calculate new center of rotation on 2D display
        //  - move display IF the center of rotation has moved slightly before and after rotation

        // DM 2012-10: this must probably be due to rounding errors only, right?
        //             We don't have documentation on if/why this code is needed
        BaseRenderer *renderer = (*iter)->GetRenderer();
        if ( !renderer ) continue;

        DisplayGeometry *displayGeometry = renderer->GetDisplayGeometry();

        Point2D rotationCenter2DWorld, point2DDisplayPreRotation, point2DDisplayPostRotation;
        displayGeometry->Map( m_CenterOfRotation, rotationCenter2DWorld );
        displayGeometry->WorldToDisplay( rotationCenter2DWorld, point2DDisplayPreRotation );

        TimeGeometry* timeGeometry = (*iter)->GetCreatedWorldGeometry();
        if (!timeGeometry) continue;

        timeGeometry->ExecuteOperation(&rotationOperation);

        displayGeometry->Map( m_CenterOfRotation, rotationCenter2DWorld );
        displayGeometry->WorldToDisplay( rotationCenter2DWorld, point2DDisplayPostRotation );
        Vector2D vector2DDisplayDiff = point2DDisplayPostRotation - point2DDisplayPreRotation;

        displayGeometry->MoveBy( vector2DDisplayDiff );

        (*iter)->SendCreatedWorldGeometryUpdate();
    }

    RenderingManager::GetInstance()->RequestUpdateAll();

    this->InvokeEvent( SliceRotationEvent() ); // notify listeners

    return true;
}
开发者ID:nxzlj,项目名称:MITK,代码行数:63,代码来源:mitkSlicesRotator.cpp

示例6: DoDecideBetweenRotationAndSliceSelection

bool SlicesRotator::DoDecideBetweenRotationAndSliceSelection(Action*, const StateEvent* e)
{
    // Decide between moving and rotation slices.
    // For basic decision logic see class documentation.

    /*
    Detail logic:

    1. Find the SliceNavigationController that has sent the event: this one defines our rendering plane and will NOT be rotated. Needs not even be counted or checked.
    2. Inspect every other SliceNavigationController
    - calculate the line intersection of this SliceNavigationController's plane with our rendering plane
    - if there is NO interesection, ignore and continue
    - IF there is an intersection
    - check the mouse cursor's distance from that line.
    0. if the line is NOT near the cursor, remember the plane as "one of the other planes" (which can be rotated in "locked" mode)
    1. on first line near the cursor,  just remember this intersection line as THE other plane that we want to rotate
    2. on every consecutive line near the cursor, check if the line is geometrically identical to the line that we want to rotate
    - if yes, we just push this line to the "other" lines and rotate it along
    - if no, then we have a situation where the mouse is near two other lines (e.g. crossing point) and don't want to rotate
    */
    const DisplayPositionEvent* posEvent = dynamic_cast<const DisplayPositionEvent*>(e->GetEvent());
    if (!posEvent) return false;

    BaseRenderer* clickedRenderer = e->GetEvent()->GetSender();
    const PlaneGeometry* ourViewportGeometry = dynamic_cast<const PlaneGeometry*>( clickedRenderer->GetCurrentWorldPlaneGeometry() );
    // These sanity checks were introduced with bug 17877, since plane geometries are now a shared base class of several geometries
    // They may ultimately be unecessary

    const mitk::AbstractTransformGeometry* abstractGeometry = dynamic_cast< const AbstractTransformGeometry * > (ourViewportGeometry);
    if (abstractGeometry != NULL) MITK_WARN << "SliceRotator recieved an AbstractTransformGeometry, expecting a simple PlainGeometry, behaviour should be verified.";
    const mitk::DisplayGeometry* displayGeometry = dynamic_cast< const DisplayGeometry * > (ourViewportGeometry);
    if (displayGeometry != NULL) MITK_WARN << "SliceRotator recieved a DisplayGeometry, expecting a simple PlainGeometry, behaviour should be verified.";
    // End sanity checks

    if (!ourViewportGeometry) return false;

    DisplayGeometry* clickedDisplayGeometry = clickedRenderer->GetDisplayGeometry();
    if (!clickedDisplayGeometry) return false;

    MITK_DEBUG << "=============================================";
    MITK_DEBUG << "Renderer under cursor is " << clickedRenderer->GetName();

    Point3D cursorPosition = posEvent->GetWorldPosition();
    const PlaneGeometry* geometryToBeRotated = NULL;  // this one is under the mouse cursor
    const PlaneGeometry* anyOtherGeometry = NULL;    // this is also visible (for calculation of intersection ONLY)
    Line3D intersectionLineWithGeometryToBeRotated;

    bool hitMultipleLines(false);
    m_SNCsToBeRotated.clear();

    const double threshholdDistancePixels = 12.0;

    for (SNCVector::iterator iter = m_RotatableSNCs.begin(); iter != m_RotatableSNCs.end(); ++iter)
    {
        // If the mouse cursor is in 3D Renderwindow, do not check for intersecting planes.
        if (clickedRenderer->GetMapperID() == BaseRenderer::Standard3D)
            break;

        const PlaneGeometry* otherRenderersRenderPlane = (*iter)->GetCurrentPlaneGeometry();
        if (otherRenderersRenderPlane == NULL) continue; // ignore, we don't see a plane
        MITK_DEBUG << "  Checking plane of renderer " << (*iter)->GetRenderer()->GetName();

        // check if there is an intersection
        Line3D intersectionLine; // between rendered/clicked geometry and the one being analyzed
        if (!ourViewportGeometry->IntersectionLine( otherRenderersRenderPlane, intersectionLine ))
        {
            continue; // we ignore this plane, it's parallel to our plane
        }

        // check distance from intersection line
        double distanceFromIntersectionLine = intersectionLine.Distance( cursorPosition );
        ScalarType distancePixels = distanceFromIntersectionLine / clickedDisplayGeometry->GetScaleFactorMMPerDisplayUnit();
        MITK_DEBUG << "    Distance of plane from cursor " << distanceFromIntersectionLine << " mm, which is around " << distancePixels << " px" ;

        // far away line, only remember for linked rotation if necessary
        if (distanceFromIntersectionLine > threshholdDistancePixels)
        {
            MITK_DEBUG << "    Plane is too far away --> remember as otherRenderersRenderPlane";
            anyOtherGeometry = otherRenderersRenderPlane; // we just take the last one, so overwrite each iteration (we just need some crossing point)
            // TODO what about multiple crossings? NOW we have undefined behavior / random crossing point is used

            if (m_LinkPlanes)
            {
                m_SNCsToBeRotated.push_back(*iter);
            }
        }
        else // close to cursor
        {
            MITK_DEBUG << "    Plane is close enough to cursor...";
            if ( geometryToBeRotated == NULL ) // first one close to the cursor
            {
                MITK_DEBUG << "    It is the first close enough geometry, remember as geometryToBeRotated";
                geometryToBeRotated = otherRenderersRenderPlane;
                intersectionLineWithGeometryToBeRotated = intersectionLine;
                m_SNCsToBeRotated.push_back(*iter);
            }
            else
            {
                MITK_DEBUG << "    Second or later close enough geometry";
                // compare to the line defined by geometryToBeRotated: if identical, just rotate this otherRenderersRenderPlane together with the primary one
//.........这里部分代码省略.........
开发者ID:nxzlj,项目名称:MITK,代码行数:101,代码来源:mitkSlicesRotator.cpp


注:本文中的BaseRenderer::GetDisplayGeometry方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。