本文整理汇总了C++中AudioChunk::start方法的典型用法代码示例。如果您正苦于以下问题:C++ AudioChunk::start方法的具体用法?C++ AudioChunk::start怎么用?C++ AudioChunk::start使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类AudioChunk
的用法示例。
在下文中一共展示了AudioChunk::start方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: pull
void Splicer::pull(AudioChunk &chunk)
{
Uint32 left = chunk.length(), chans = chunk.format().channels;
Sint32 *data[PG_MAX_CHANNELS];
for (Uint32 i = 0; i < chans; ++i) data[i] = chunk.start(i);
//Query exhausted each loop to refresh the value of "current".
while (!exhausted())
{
//Pull data from next stream
AudioChunk sub(chunk.scratch(), output, data, left, chunk.sync);
current->pull(sub);
//Partial advance
if (current->exhausted())
{
Uint32 cut = sub.cutoff();
for (Uint32 i = 0; i < chans; ++i) data[i] += cut;
left -= cut;
current = NULL;
if (left) continue;
}
return;
}
//The Splicer is exhausted!
chunk.cutoff(data[0] - chunk.start(0));
}
示例2: pull
virtual void pull(AudioChunk &chunk)
{
if (!chunk.length()) return;
if (!valid || finished) {chunk.silence(); return;}
int samples, have = 0, need = chunk.length();
//Create pointers to 16-bit data
short *d16[PG_MAX_CHANNELS];
for (Uint32 i = 0; i < chunk.format().channels; ++i)
d16[i] = (short*) chunk.start(i);
while (true)
{
samples = stb_vorbis_get_samples_short(ogg,
chunk.format().channels, d16, (need-have));
if (samples < 0)
{
finished = true;
//cout << " VORBIS ERROR" << endl;
break;
}
if (samples == 0)
{
//File's end
if (loop)
{
stb_vorbis_seek_start(ogg);
continue;
}
else
{
finished = true;
break;
}
}
for (Uint32 i=0; i < chunk.format().channels; ++i)
d16[i] += samples;
have += samples;
//if (have > need) cout << "VORBIS OVERDRAW" << endl;
//std::cout << "OGG pull: " << have << "/" << need << std::endl;
if (have >= need) break;
}
//Cutoff marker if necessary
if (have < need) chunk.cutoff(have);
//Upsample data to 24-bit Sint32s
for (Uint32 i=0; i < chunk.format().channels; ++i)
{
Sint32 *start = chunk.start(i), *op = start + have;
short *ip = d16[i];
while (op!=start) {*(--op) = 256 * Sint32(*(--ip));}
}
}
示例3: pull
virtual void pull(AudioChunk &chunk)
{
//This is possible at startup; race conditions are bad.
if (!back) chunk.silence();
//Shorthand.
Uint32 frame = back->mikeFrame, length = back->mikeLength;
const Sint32 *data = back->mikeData;
//How much information is available?
if (readFrame != frame) {readFrame = frame; prog = 0;}
Uint32 want = chunk.length(), get = std::min(length-prog, want);
//Read what we can from the buffer
std::memcpy((void*)chunk.start(0), (const void*)(data+prog), 4*get);
prog += get;
//Fill your cup too full and it will spill...
if (get < want)
std::memset((void*)(chunk.start(0)+get), 0, 4*(want-get));
}
示例4: pull
void Bandpass::pull(AudioChunk &chunk,
const Bandpass_Node &a, const Bandpass_Node &b)
{
//Pull source data
source.pull(chunk);
//Calculate RC multipliers
float
al = RCCONV / ((a.low<=0.0f)?40000.0f:a.low),
ah = RCCONV / ((a.high<=0.0f)?10.0f:a.high),
bl = RCCONV / ((b.low<=0.0f)?40000.0f:b.low),
bh = RCCONV / ((b.high<=0.0f)?10.0f:b.high);
float lpRC = al, hpRC = ah,
lpM = pow(bl/al, 1.0f / float(chunk.length())),
hpM = pow(bh/ah, 1.0f / float(chunk.length())),
lpA, hpA, samp,
dt = 1.0f / float(chunk.format().rate);
//Apply effect!
Uint32 chan = source.format().channels;
for (Uint32 i = 0; i < chan; ++i)
{
Sint32 *pos = chunk.start(i), *end = chunk.end(i);
float &lpPc = lpP[i], &hpDc = hpD[i];
while (pos < end)
{
//Interpolate settings
lpA = dt / (lpRC + dt); lpRC *= lpM;
hpA = hpRC / (hpRC + dt); hpRC *= hpM;
//Get samples
samp = float(*pos);
//Lowpass
samp = lpPc + lpA * (samp-lpPc);
lpPc = samp;
//Highpass (confusing but correct)
samp = hpA * (samp+hpDc);
hpDc = samp - lpPc;
//Set samples
*pos = Sint32(samp);
++pos;
}
}
}
示例5: pull
void Oscillator::pull(AudioChunk &chunk, const State &a, const State &b)
{
//Phase goes from -1 to 1. Wierd? Maybe.
while (phase >= 1.0f) phase -= 2.0f;
while (phase < -1.0f) phase += 2.0f;
Sint32 samp;
float v, x, sq;
float step = (b.freq / output.rate) * 2.0f,
amp = b.amp * 16777215.0f,
ph = phase;
Sint32 *i = chunk.start(0), *e = chunk.end(0);
switch (type)
{
case SINE:
while (i != e)
{
//Simple sine wave
samp = amp*sin(PI * ph);
ph += step;
*i = samp; ++i;
ph -= 2.0f*int(ph*.5f); //Restrict to [-1, 1]
}
break;
case SQUARE:
while (i != e)
{
samp = amp * ((ph>=0.0f) ? 1.0f : -1.0f);
ph += step;
*i = samp; ++i;
ph -= 2.0f*int(ph*.5f); //Restrict to [-1, 1]
}
break;
case TRIANGLE:
while (i != e)
{
samp = amp * (2.0f*std::abs(ph) - 1.0f);
ph += step;
*i = samp; ++i;
ph -= 2.0f*int(ph*.5f); //Restrict to [-1, 1]
}
break;
case SAWTOOTH:
while (i != e)
{
samp = amp * ph;
ph += step;
*i = samp; ++i;
ph -= 2.0f*int(ph*.5f); //Restrict to [-1, 1]
}
break;
case KLAXON:
default:
{
const float PISQ = PI*PI;
while (i != e)
{
//Sine wave approximation gone wrong
sq = PISQ*ph*ph; x = PI*ph*amp;
v = x * 1.02394347; //Makes the endpoints line up
x *= sq; v -= x/6.0f;
x *= sq; v += x/120.0f;
x *= sq; v -= x/5040.0f;
samp = x;
ph += step;
*i = samp; ++i;
ph -= 2.0f*int(ph*.5f); //Restrict to [-1, 1]
}
}
break;
}
phase = ph;
//Copy signal into all other channels
for (Uint32 c = chunk.channels()-1; c > 0; --c)
{
std::memcpy(chunk.start(c), chunk.start(0), 4*chunk.length());
}
}