本文整理汇总了C++中ASTContext::getBuiltinVaListType方法的典型用法代码示例。如果您正苦于以下问题:C++ ASTContext::getBuiltinVaListType方法的具体用法?C++ ASTContext::getBuiltinVaListType怎么用?C++ ASTContext::getBuiltinVaListType使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类ASTContext
的用法示例。
在下文中一共展示了ASTContext::getBuiltinVaListType方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: DecodeTypeFromStr
/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
/// pointer over the consumed characters. This returns the resultant type.
static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
Builtin::Context::GetBuiltinTypeError &Error,
bool AllowTypeModifiers = true) {
// Modifiers.
int HowLong = 0;
bool Signed = false, Unsigned = false;
// Read the modifiers first.
bool Done = false;
while (!Done) {
switch (*Str++) {
default: Done = true; --Str; break;
case 'S':
assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
assert(!Signed && "Can't use 'S' modifier multiple times!");
Signed = true;
break;
case 'U':
assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
assert(!Unsigned && "Can't use 'S' modifier multiple times!");
Unsigned = true;
break;
case 'L':
assert(HowLong <= 2 && "Can't have LLLL modifier");
++HowLong;
break;
}
}
QualType Type;
// Read the base type.
switch (*Str++) {
default: assert(0 && "Unknown builtin type letter!");
case 'v':
assert(HowLong == 0 && !Signed && !Unsigned &&
"Bad modifiers used with 'v'!");
Type = Context.VoidTy;
break;
case 'f':
assert(HowLong == 0 && !Signed && !Unsigned &&
"Bad modifiers used with 'f'!");
Type = Context.FloatTy;
break;
case 'd':
assert(HowLong < 2 && !Signed && !Unsigned &&
"Bad modifiers used with 'd'!");
if (HowLong)
Type = Context.LongDoubleTy;
else
Type = Context.DoubleTy;
break;
case 's':
assert(HowLong == 0 && "Bad modifiers used with 's'!");
if (Unsigned)
Type = Context.UnsignedShortTy;
else
Type = Context.ShortTy;
break;
case 'i':
if (HowLong == 3)
Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
else if (HowLong == 2)
Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
else if (HowLong == 1)
Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
else
Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
break;
case 'c':
assert(HowLong == 0 && "Bad modifiers used with 'c'!");
if (Signed)
Type = Context.SignedCharTy;
else if (Unsigned)
Type = Context.UnsignedCharTy;
else
Type = Context.CharTy;
break;
case 'b': // boolean
assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
Type = Context.BoolTy;
break;
case 'z': // size_t.
assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
Type = Context.getSizeType();
break;
case 'F':
Type = Context.getCFConstantStringType();
break;
case 'a':
Type = Context.getBuiltinVaListType();
assert(!Type.isNull() && "builtin va list type not initialized!");
break;
case 'A':
// This is a "reference" to a va_list; however, what exactly
// this means depends on how va_list is defined. There are two
// different kinds of va_list: ones passed by value, and ones
// passed by reference. An example of a by-value va_list is
//.........这里部分代码省略.........
示例2: Desugar
// Returns a desugared version of the QualType, and marks ShouldAKA as true
// whenever we remove significant sugar from the type.
static QualType Desugar(ASTContext &Context, QualType QT, bool &ShouldAKA) {
QualifierCollector QC;
while (true) {
const Type *Ty = QC.strip(QT);
// Don't aka just because we saw an elaborated type...
if (const ElaboratedType *ET = dyn_cast<ElaboratedType>(Ty)) {
QT = ET->desugar();
continue;
}
// ... or a paren type ...
if (const ParenType *PT = dyn_cast<ParenType>(Ty)) {
QT = PT->desugar();
continue;
}
// ...or a substituted template type parameter ...
if (const SubstTemplateTypeParmType *ST =
dyn_cast<SubstTemplateTypeParmType>(Ty)) {
QT = ST->desugar();
continue;
}
// ...or an attributed type...
if (const AttributedType *AT = dyn_cast<AttributedType>(Ty)) {
QT = AT->desugar();
continue;
}
// ... or an auto type.
if (const AutoType *AT = dyn_cast<AutoType>(Ty)) {
if (!AT->isSugared())
break;
QT = AT->desugar();
continue;
}
// Don't desugar template specializations.
if (isa<TemplateSpecializationType>(Ty))
break;
// Don't desugar magic Objective-C types.
if (QualType(Ty,0) == Context.getObjCIdType() ||
QualType(Ty,0) == Context.getObjCClassType() ||
QualType(Ty,0) == Context.getObjCSelType() ||
QualType(Ty,0) == Context.getObjCProtoType())
break;
// Don't desugar va_list.
if (QualType(Ty,0) == Context.getBuiltinVaListType())
break;
// Otherwise, do a single-step desugar.
QualType Underlying;
bool IsSugar = false;
switch (Ty->getTypeClass()) {
#define ABSTRACT_TYPE(Class, Base)
#define TYPE(Class, Base) \
case Type::Class: { \
const Class##Type *CTy = cast<Class##Type>(Ty); \
if (CTy->isSugared()) { \
IsSugar = true; \
Underlying = CTy->desugar(); \
} \
break; \
}
#include "clang/AST/TypeNodes.def"
}
// If it wasn't sugared, we're done.
if (!IsSugar)
break;
// If the desugared type is a vector type, we don't want to expand
// it, it will turn into an attribute mess. People want their "vec4".
if (isa<VectorType>(Underlying))
break;
// Don't desugar through the primary typedef of an anonymous type.
if (const TagType *UTT = Underlying->getAs<TagType>())
if (const TypedefType *QTT = dyn_cast<TypedefType>(QT))
if (UTT->getDecl()->getTypedefForAnonDecl() == QTT->getDecl())
break;
// Record that we actually looked through an opaque type here.
ShouldAKA = true;
QT = Underlying;
}
// If we have a pointer-like type, desugar the pointee as well.
// FIXME: Handle other pointer-like types.
if (const PointerType *Ty = QT->getAs<PointerType>()) {
QT = Context.getPointerType(Desugar(Context, Ty->getPointeeType(),
ShouldAKA));
} else if (const LValueReferenceType *Ty = QT->getAs<LValueReferenceType>()) {
QT = Context.getLValueReferenceType(Desugar(Context, Ty->getPointeeType(),
ShouldAKA));
} else if (const RValueReferenceType *Ty = QT->getAs<RValueReferenceType>()) {
QT = Context.getRValueReferenceType(Desugar(Context, Ty->getPointeeType(),
ShouldAKA));
//.........这里部分代码省略.........
示例3: ShouldAKA
/// Determines whether we should have an a.k.a. clause when
/// pretty-printing a type. There are three main criteria:
///
/// 1) Some types provide very minimal sugar that doesn't impede the
/// user's understanding --- for example, elaborated type
/// specifiers. If this is all the sugar we see, we don't want an
/// a.k.a. clause.
/// 2) Some types are technically sugared but are much more familiar
/// when seen in their sugared form --- for example, va_list,
/// vector types, and the magic Objective C types. We don't
/// want to desugar these, even if we do produce an a.k.a. clause.
/// 3) Some types may have already been desugared previously in this diagnostic.
/// if this is the case, doing another "aka" would just be clutter.
///
static bool ShouldAKA(ASTContext &Context, QualType QT,
const Diagnostic::ArgumentValue *PrevArgs,
unsigned NumPrevArgs,
QualType &DesugaredQT) {
QualType InputTy = QT;
bool AKA = false;
QualifierCollector Qc;
while (true) {
const Type *Ty = Qc.strip(QT);
// Don't aka just because we saw an elaborated type...
if (isa<ElaboratedType>(Ty)) {
QT = cast<ElaboratedType>(Ty)->desugar();
continue;
}
// ...or a qualified name type...
if (isa<QualifiedNameType>(Ty)) {
QT = cast<QualifiedNameType>(Ty)->desugar();
continue;
}
// ...or an injected class name...
if (isa<InjectedClassNameType>(Ty)) {
QT = cast<InjectedClassNameType>(Ty)->desugar();
continue;
}
// ...or a substituted template type parameter.
if (isa<SubstTemplateTypeParmType>(Ty)) {
QT = cast<SubstTemplateTypeParmType>(Ty)->desugar();
continue;
}
// Don't desugar template specializations.
if (isa<TemplateSpecializationType>(Ty))
break;
// Don't desugar magic Objective-C types.
if (QualType(Ty,0) == Context.getObjCIdType() ||
QualType(Ty,0) == Context.getObjCClassType() ||
QualType(Ty,0) == Context.getObjCSelType() ||
QualType(Ty,0) == Context.getObjCProtoType())
break;
// Don't desugar va_list.
if (QualType(Ty,0) == Context.getBuiltinVaListType())
break;
// Otherwise, do a single-step desugar.
QualType Underlying;
bool IsSugar = false;
switch (Ty->getTypeClass()) {
#define ABSTRACT_TYPE(Class, Base)
#define TYPE(Class, Base) \
case Type::Class: { \
const Class##Type *CTy = cast<Class##Type>(Ty); \
if (CTy->isSugared()) { \
IsSugar = true; \
Underlying = CTy->desugar(); \
} \
break; \
}
#include "clang/AST/TypeNodes.def"
}
// If it wasn't sugared, we're done.
if (!IsSugar)
break;
// If the desugared type is a vector type, we don't want to expand
// it, it will turn into an attribute mess. People want their "vec4".
if (isa<VectorType>(Underlying))
break;
// Don't desugar through the primary typedef of an anonymous type.
if (isa<TagType>(Underlying) && isa<TypedefType>(QT))
if (cast<TagType>(Underlying)->getDecl()->getTypedefForAnonDecl() ==
cast<TypedefType>(QT)->getDecl())
break;
// Otherwise, we're tearing through something opaque; note that
// we'll eventually need an a.k.a. clause and keep going.
AKA = true;
//.........这里部分代码省略.........