本文整理汇总了C++中AABB::CenterPoint方法的典型用法代码示例。如果您正苦于以下问题:C++ AABB::CenterPoint方法的具体用法?C++ AABB::CenterPoint怎么用?C++ AABB::CenterPoint使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类AABB
的用法示例。
在下文中一共展示了AABB::CenterPoint方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: initTree
void ChunkManager::initTree(ChunkTree& pChild)
{
boost::shared_ptr<Chunk>& pChunk = pChild.getValue();
AABB bounds = pChild.getParent()->getValue()->m_bounds;
vec center = bounds.CenterPoint();
vec c0 = bounds.CornerPoint(pChild.getCorner().index());
AABB b0(vec(min(c0.x, center.x),
min(c0.y, center.y),
min(c0.z, center.z)),
vec(max(c0.x, center.x),
max(c0.y, center.y),
max(c0.z, center.z)));
pChunk = boost::make_shared<Chunk>(b0, 1.0f/pChild.getLevel(), this);
pChunk->m_pTree = &pChild;
*pChunk->m_workInProgress = true;
m_chunkGeneratorQueue.push(pChild.getValueCopy());
}
示例2: SetFrom
void OBB::SetFrom(const AABB &aabb)
{
pos = aabb.CenterPoint();
r = aabb.HalfSize();
axis[0] = float3(1,0,0);
axis[1] = float3(0,1,0);
axis[2] = float3(0,0,1);
}
示例3: OBBSetFrom
void OBBSetFrom(OBB &obb, const AABB &aabb, const Matrix &m)
{
obb.pos = m.MulPos(aabb.CenterPoint());
float3 size = aabb.HalfSize();
obb.axis[0] = m.MulDir(float3(size.x, 0, 0));
obb.axis[1] = m.MulDir(float3(0, size.y, 0));
obb.axis[2] = m.MulDir(float3(0, 0, size.z));
obb.r.x = obb.axis[0].Normalize();
obb.r.y = obb.axis[1].Normalize();
obb.r.z = obb.axis[2].Normalize();
}
示例4: Intersects
/// Set Christer Ericson's Real-Time Collision Detection, p.164.
bool Plane::Intersects(const AABB &aabb) const
{
float3 c = aabb.CenterPoint();
float3 e = aabb.HalfDiagonal();
// Compute the projection interval radius of the AABB onto L(t) = aabb.center + t * plane.normal;
float r = e[0]*Abs(normal[0]) + e[1]*Abs(normal[1]) + e[2]*Abs(normal[2]);
// Compute the distance of the box center from plane.
float s = Dot(normal, c) - d;
return Abs(s) <= r;
}
示例5: Intersects
/// The Plane-AABB intersection is implemented according to Christer Ericson's Real-Time Collision Detection, p.164. [groupSyntax]
bool Plane::Intersects(const AABB &aabb) const
{
vec c = aabb.CenterPoint();
vec e = aabb.HalfDiagonal();
// Compute the projection interval radius of the AABB onto L(t) = aabb.center + t * plane.normal;
float r = e[0]*Abs(normal[0]) + e[1]*Abs(normal[1]) + e[2]*Abs(normal[2]);
// Compute the distance of the box center from plane.
// float s = Dot(normal, c) - d;
float s = Dot(normal.xyz(), c.xyz()) - d; ///\todo Use the above form when Plane is SSE'ized.
return Abs(s) <= r;
}
示例6: AABBTransformAsAABB
void AABBTransformAsAABB(AABB &aabb, Matrix &m)
{
float3 newCenter = m.MulPos(aabb.CenterPoint());
float3 newDir;
float3 h = aabb.HalfSize();
// The following is equal to taking the absolute value of the whole matrix m.
newDir.x = ABSDOT3(m[0], h);
newDir.y = ABSDOT3(m[1], h);
newDir.z = ABSDOT3(m[2], h);
aabb.minPoint = newCenter - newDir;
aabb.maxPoint = newCenter + newDir;
}
示例7: min
void ChunkManager::initTree1(ChunkTree& pChild)
{
boost::shared_ptr<Chunk>& pChunk = pChild.getValue();
AABB bounds = pChild.getParent()->getValue()->m_bounds;
vec center = bounds.CenterPoint();
vec c0 = bounds.CornerPoint(pChild.getCorner().index());
AABB b0(vec(min(c0.x, center.x),
min(c0.y, center.y),
min(c0.z, center.z)),
vec(max(c0.x, center.x),
max(c0.y, center.y),
max(c0.z, center.z)));
pChunk = boost::make_shared<Chunk>(b0, 1.0f/pChild.getLevel(), this);
pChunk->m_pTree = &pChild;
pChunk->generateTerrain();
pChunk->generateMesh();
}
示例8: OBBSetFrom
void OBBSetFrom(OBB &obb, const AABB &aabb, const Matrix &m)
{
assume(m.IsColOrthogonal()); // We cannot convert transform an AABB to OBB if it gets sheared in the process.
assume(m.HasUniformScale()); // Nonuniform scale will produce shear as well.
obb.pos = m.MulPos(aabb.CenterPoint());
obb.r = aabb.HalfSize();
obb.axis[0] = DIR_VEC(m.Col(0));
obb.axis[1] = DIR_VEC(m.Col(1));
obb.axis[2] = DIR_VEC(m.Col(2));
// If the matrix m contains scaling, propagate the scaling from the axis vectors to the half-length vectors,
// since we want to keep the axis vectors always normalized in our representation.
float matrixScale = obb.axis[0].LengthSq();
matrixScale = Sqrt(matrixScale);
obb.r *= matrixScale;
matrixScale = 1.f / matrixScale;
obb.axis[0] *= matrixScale;
obb.axis[1] *= matrixScale;
obb.axis[2] *= matrixScale;
// mathassert(vec::AreOrthogonal(obb.axis[0], obb.axis[1], obb.axis[2]));
// mathassert(vec::AreOrthonormal(obb.axis[0], obb.axis[1], obb.axis[2]));
///@todo Would like to simply do the above, but instead numerical stability requires to do the following:
vec::Orthonormalize(obb.axis[0], obb.axis[1], obb.axis[2]);
}