bandSparse
位於 Matrix
包(package)。 說明
通過指定其非零值和 super-diagonals 構造稀疏帶狀矩陣。
用法
bandSparse(n, m = n, k, diagonals, symmetric = FALSE,
repr = "C", giveCsparse = (repr == "C"))
參數
n , m |
矩陣維度 。 |
k |
“diagonal numbers” 的整數向量,與 |
diagonals |
可選的子/超對角線列表;如果缺少,結果將是一個模式矩陣,即繼承自類
|
symmetric |
邏輯性;如果為 true,則結果將是對稱的(從類 |
repr |
|
giveCsparse |
(已棄用,替換為 |
值
維度為 class
CsparseMatrix
)。 且對角線為 “bands” 的稀疏矩陣(
例子
diags <- list(1:30, 10*(1:20), 100*(1:20))
s1 <- bandSparse(13, k = -c(0:2, 6), diag = c(diags, diags[2]), symm=TRUE)
s1
s2 <- bandSparse(13, k = c(0:2, 6), diag = c(diags, diags[2]), symm=TRUE)
stopifnot(identical(s1, t(s2)), is(s1,"dsCMatrix"))
## a pattern Matrix of *full* (sub-)diagonals:
bk <- c(0:4, 7,9)
(s3 <- bandSparse(30, k = bk, symm = TRUE))
## If you want a pattern matrix, but with "sparse"-diagonals,
## you currently need to go via logical sparse:
lLis <- lapply(list(rpois(20, 2), rpois(20, 1), rpois(20, 3))[c(1:3, 2:3, 3:2)],
as.logical)
(s4 <- bandSparse(20, k = bk, symm = TRUE, diag = lLis))
(s4. <- as(drop0(s4), "nsparseMatrix"))
n <- 1e4
bk <- c(0:5, 7,11)
bMat <- matrix(1:8, n, 8, byrow=TRUE)
bLis <- as.data.frame(bMat)
B <- bandSparse(n, k = bk, diag = bLis)
Bs <- bandSparse(n, k = bk, diag = bLis, symmetric=TRUE)
B [1:15, 1:30]
Bs[1:15, 1:30]
## can use a list *or* a matrix for specifying the diagonals:
stopifnot(identical(B, bandSparse(n, k = bk, diag = bMat)),
identical(Bs, bandSparse(n, k = bk, diag = bMat, symmetric=TRUE))
, inherits(B, "dtCMatrix") # triangular!
)
也可以看看
band
,用於提取矩陣帶; bdiag
、diag
、sparseMatrix
、Matrix
。
相關用法
- R band-methods 提取矩陣的帶
- R bdiag 構建分塊對角矩陣
- R boolmatmult-methods 布爾算術矩陣乘積:%&% 和方法
- R dtrMatrix-class 三角形稠密數值矩陣
- R facmul-methods 乘以矩陣因式分解的因數
- R solve-methods 函數求解矩陣包中的方法
- R updown-methods 更新和降級稀疏 Cholesky 分解
- R printSpMatrix 靈活格式化和打印稀疏矩陣
- R symmetricMatrix-class 包矩陣中對稱矩陣的虛擬類
- R all.equal-methods 函數 all.equal() 的矩陣封裝方法
- R ltrMatrix-class 三角密集邏輯矩陣
- R Hilbert 生成希爾伯特矩陣
- R nearPD 最近正定矩陣
- R lsyMatrix-class 對稱密集邏輯矩陣
- R CHMfactor-class 稀疏 Cholesky 分解
- R symmpart-methods 矩陣的對稱部分和偏斜(對稱)部分
- R sparseMatrix 從非零項構建一般稀疏矩陣
- R dgCMatrix-class 壓縮、稀疏、麵向列的數值矩陣
- R Cholesky-methods Cholesky 分解方法
- R Subassign-methods “[<-”的方法 - 分配給“矩陣”的子集
- R ldenseMatrix-class 密集邏輯矩陣的虛擬類“ldenseMatrix”
- R norm-methods 矩陣範數
- R ngeMatrix-class 一般密集非零模式矩陣的“ngeMatrix”類
- R CAex 阿爾伯斯的示例矩陣與“困難”特征分解
- R diagonalMatrix-class 對角矩陣的“diagonalMatrix”類
注:本文由純淨天空篩選整理自R-devel大神的英文原創作品 Construct Sparse Banded Matrix from (Sup-/Super-) Diagonals。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。