當前位置: 首頁>>代碼示例 >>用法及示例精選 >>正文


Python Pandas dataframe.rpow()用法及代碼示例


Python是進行數據分析的一種出色語言,主要是因為以數據為中心的python軟件包具有奇妙的生態係統。 Pandas是其中的一種,使導入和分析數據更加容易。

Pandas dataframe.rpow()函數用於查找數據幀和其他逐元素(二進製運算符rfloordiv)的 index 冪。此函數與執行other ** dataframe 但支持替換其中一個輸入中的丟失數據。

用法:DataFrame.rpow(other, axis=’columns’, level=None, fill_value=None)
參數:
other: Series, DataFrame, or constant
axis: For Series input, axis to match Series index on
level: Broadcast across a level, matching Index values on the passed MultiIndex leve
fill_value: Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.

返回值:結果:DataFrame

範例1:采用rpow()函數將序列中的每個元素提升到列軸上 DataFrame 中的相應值。

# importing pandas as pd 
import pandas as pd 
  
# Creating the dataframe  
df = pd.DataFrame({"A":[1, 5, 3, 4, 2], 
                   "B":[3, 2, 4, 3, 4],  
                   "C":[2, 2, 7, 3, 4],  
                   "D":[4, 3, 6, 12, 7]}, 
                    index =["A1", "A2", "A3", "A4", "A5"]) 
  
# Print the dataframe 
df

讓我們創建係列

# importing pandas as pd 
import pandas as pd 
  
# Create the series 
sr = pd.Series([12, 25, 64, 18], index =["A", "B", "C", "D"]) 
  
# Print the series 
sr

讓我們使用dataframe.rpow()函數將係列中的每個元素提升到 DataFrame 中相應元素的功效。

# equivalent to sr ** df 
df.rpow(sr, axis = 1)

輸出:


範例2:采用rpow()函數將 DataFrame 中的每個元素提升為其他 DataFrame 中的相應元素的冪

# importing pandas as pd 
import pandas as pd 
  
# Creating the first dataframe  
df1 = pd.DataFrame({"A":[1, 5, 3, 4, 2], 
                    "B":[3, 2, 4, 3, 4], 
                    "C":[2, 2, 7, 3, 4], 
                    "D":[4, 3, 6, 12, 7]}, 
                     index =["A1", "A2", "A3", "A4", "A5"]) 
  
# Creating the second dataframe 
df2 = pd.DataFrame({"A":[10, 11, 7, 8, 5], 
                    "B":[21, 5, 32, 4, 6], 
                    "C":[11, 21, 23, 7, 9], 
                    "D":[1, 5, 3, 8, 6]},  
                     index =["A1", "A2", "A3", "A4", "A5"]) 
  
# Print the first dataframe 
print(df1) 
  
# Print the second dataframe 
print(df2)

讓我們表演df2 ** df1

# raise df2 to the power of df1 
df1.rpow(df2)

輸出:



相關用法


注:本文由純淨天空篩選整理自Shubham__Ranjan大神的英文原創作品 Python | Pandas dataframe.rpow()。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。