當前位置: 首頁>>代碼示例>>Python>>正文


Python seq2seq.sequence_loss_by_example方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.seq2seq.sequence_loss_by_example方法的典型用法代碼示例。如果您正苦於以下問題:Python seq2seq.sequence_loss_by_example方法的具體用法?Python seq2seq.sequence_loss_by_example怎麽用?Python seq2seq.sequence_loss_by_example使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.seq2seq的用法示例。


在下文中一共展示了seq2seq.sequence_loss_by_example方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from tensorflow.python.ops import seq2seq [as 別名]
# 或者: from tensorflow.python.ops.seq2seq import sequence_loss_by_example [as 別名]
def __init__(self, vocabularySize, config_param):
    self.vocabularySize = vocabularySize
    self.config = config_param

    self._inputX = tf.placeholder(tf.int32, [self.config.batch_size, self.config.sequence_size], "InputsX")
    self._inputTargetsY = tf.placeholder(tf.int32, [self.config.batch_size, self.config.sequence_size], "InputTargetsY")


    #Converting Input in an Embedded form
    with tf.device("/cpu:0"): #Tells Tensorflow what GPU to use specifically
      embedding = tf.get_variable("embedding", [self.vocabularySize, self.config.embeddingSize])
      embeddingLookedUp = tf.nn.embedding_lookup(embedding, self._inputX)
      inputs = tf.split(1, self.config.sequence_size, embeddingLookedUp)
      inputTensorsAsList = [tf.squeeze(input_, [1]) for input_ in inputs]


    #Define Tensor RNN
    singleRNNCell = rnn_cell.BasicRNNCell(self.config.hidden_size)
    self.multilayerRNN =  rnn_cell.MultiRNNCell([singleRNNCell] * self.config.num_layers)
    self._initial_state = self.multilayerRNN.zero_state(self.config.batch_size, tf.float32)

    #Defining Logits
    hidden_layer_output, last_state = rnn.rnn(self.multilayerRNN, inputTensorsAsList, initial_state=self._initial_state)
    hidden_layer_output = tf.reshape(tf.concat(1, hidden_layer_output), [-1, self.config.hidden_size])
    self._logits = tf.nn.xw_plus_b(hidden_layer_output, tf.get_variable("softmax_w", [self.config.hidden_size, self.vocabularySize]), tf.get_variable("softmax_b", [self.vocabularySize]))
    self._predictionSoftmax = tf.nn.softmax(self._logits)

    #Define the loss
    loss = seq2seq.sequence_loss_by_example([self._logits], [tf.reshape(self._inputTargetsY, [-1])], [tf.ones([self.config.batch_size * self.config.sequence_size])], self.vocabularySize)
    self._cost = tf.div(tf.reduce_sum(loss), self.config.batch_size)

    self._final_state = last_state 
開發者ID:killianlevacher,項目名稱:TrumpBSQuoteRNNGenerator,代碼行數:34,代碼來源:RNN_Model.py

示例2: model_with_buckets

# 需要導入模塊: from tensorflow.python.ops import seq2seq [as 別名]
# 或者: from tensorflow.python.ops.seq2seq import sequence_loss_by_example [as 別名]
def model_with_buckets(encoder_inputs, decoder_inputs, targets, weights,
                       buckets, seq2seq, softmax_loss_function=None,
                       per_example_loss=False, name=None):

    if len(encoder_inputs) < buckets[-1][0]:
        raise ValueError("Length of encoder_inputs (%d) must be at least that of la"
                            "st bucket (%d)." % (len(encoder_inputs), buckets[-1][0]))
    if len(targets) < buckets[-1][1]:
        raise ValueError("Length of targets (%d) must be at least that of last"
                        "bucket (%d)." % (len(targets), buckets[-1][1]))
    if len(weights) < buckets[-1][1]:
        raise ValueError("Length of weights (%d) must be at least that of last"
                            "bucket (%d)." % (len(weights), buckets[-1][1]))

    all_inputs = encoder_inputs + decoder_inputs + targets + weights
    losses = []
    outputs = []
    with ops.op_scope(all_inputs, name, "model_with_buckets"):
        for j, bucket in enumerate(buckets):
            with variable_scope.variable_scope(variable_scope.get_variable_scope(),
                                                reuse=True if j > 0 else None):
                bucket_outputs, _, _ = seq2seq(encoder_inputs[:bucket[0]], decoder_inputs[:bucket[1]])

                outputs.append(bucket_outputs)
                if per_example_loss:
                    losses.append(sequence_loss_by_example(
                        outputs[-1], targets[:bucket[1]], weights[:bucket[1]],
                        softmax_loss_function=softmax_loss_function))
                else:
                    losses.append(sequence_loss(
                        outputs[-1], targets[:bucket[1]], weights[:bucket[1]],
                        softmax_loss_function=softmax_loss_function))

    return outputs, losses 
開發者ID:icoxfog417,項目名稱:DialogueBreakdownDetection2016,代碼行數:36,代碼來源:tensorflow_custom.py

示例3: __init__

# 需要導入模塊: from tensorflow.python.ops import seq2seq [as 別名]
# 或者: from tensorflow.python.ops.seq2seq import sequence_loss_by_example [as 別名]
def __init__(self, args, data, infer=False):
        if infer:
            args.batch_size = 1
            args.seq_length = 1
        with tf.name_scope('inputs'):
            self.input_data = tf.placeholder(
                tf.int32, [args.batch_size, args.seq_length])
            self.target_data = tf.placeholder(
                tf.int32, [args.batch_size, args.seq_length])

        with tf.name_scope('model'):
            self.cell = rnn_cell.BasicLSTMCell(args.state_size)
            self.cell = rnn_cell.MultiRNNCell([self.cell] * args.num_layers)
            self.initial_state = self.cell.zero_state(
                args.batch_size, tf.float32)
            with tf.variable_scope('rnnlm'):
                w = tf.get_variable(
                    'softmax_w', [args.state_size, data.vocab_size])
                b = tf.get_variable('softmax_b', [data.vocab_size])
                with tf.device("/cpu:0"):
                    embedding = tf.get_variable(
                        'embedding', [data.vocab_size, args.state_size])
                    inputs = tf.nn.embedding_lookup(embedding, self.input_data)
            outputs, last_state = tf.nn.dynamic_rnn(
                self.cell, inputs, initial_state=self.initial_state)

        with tf.name_scope('loss'):
            output = tf.reshape(outputs, [-1, args.state_size])

            self.logits = tf.matmul(output, w) + b
            self.probs = tf.nn.softmax(self.logits)
            self.last_state = last_state

            targets = tf.reshape(self.target_data, [-1])
            loss = seq2seq.sequence_loss_by_example([self.logits],
                                                    [targets],
                                                    [tf.ones_like(targets, dtype=tf.float32)])
            self.cost = tf.reduce_sum(loss) / args.batch_size
            tf.summary.scalar('loss', self.cost)

        with tf.name_scope('optimize'):
            self.lr = tf.placeholder(tf.float32, [])
            tf.summary.scalar('learning_rate', self.lr)

            optimizer = tf.train.AdamOptimizer(self.lr)
            tvars = tf.trainable_variables()
            grads = tf.gradients(self.cost, tvars)
            for g in grads:
                tf.summary.histogram(g.name, g)
            grads, _ = tf.clip_by_global_norm(grads, args.grad_clip)

            self.train_op = optimizer.apply_gradients(zip(grads, tvars))
            self.merged_op = tf.summary.merge_all() 
開發者ID:baoblackcoal,項目名稱:RFR-solution,代碼行數:55,代碼來源:gen_jokes.py

示例4: build_graph

# 需要導入模塊: from tensorflow.python.ops import seq2seq [as 別名]
# 或者: from tensorflow.python.ops.seq2seq import sequence_loss_by_example [as 別名]
def build_graph(self):
    config = self.config
    self.reader = utils.DataReader(seq_len=config.seq_length, batch_size=config.batch_size, data_filename=config.data_filename)

    self.cell = rnn_cell.BasicLSTMCell(config.rnn_size, state_is_tuple=True)

    self.input_data = tf.placeholder(tf.int32, [None, config.input_length])
    self.targets = tf.placeholder(tf.int32, [None, 1])
    self.initial_state = self.cell.zero_state(tf.shape(self.targets)[0], tf.float32)

    with tf.variable_scope("input_embedding"):
      embedding = tf.get_variable("embedding", [config.vocab_size, config.rnn_size])
      inputs = tf.split(1, config.input_length, tf.nn.embedding_lookup(embedding, self.input_data))
      inputs = [tf.squeeze(input, [1]) for input in inputs]

    with tf.variable_scope("send_to_rnn"):
      state = self.initial_state
      output = None

      for i, input in enumerate(inputs):
        if i > 0:
          tf.get_variable_scope().reuse_variables()
        output, state = self.cell(input, state)

    with tf.variable_scope("softmax"):
      softmax_w = tf.get_variable("softmax_w", [config.rnn_size, config.vocab_size])
      softmax_b = tf.get_variable("softmax_b", [config.vocab_size])
      self.logits = tf.matmul(output, softmax_w) + softmax_b
      self.probs = tf.nn.softmax(self.logits)
      self.output = tf.cast(tf.reshape(tf.arg_max(self.probs, 1), [-1, 1]), tf.int32)
      self.accuracy = tf.reduce_mean(tf.cast(tf.equal(self.output, self.targets), tf.float32))

    loss = seq2seq.sequence_loss_by_example([self.logits],
                                            [tf.reshape(self.targets, [-1])],
                                            [tf.ones([config.batch_size])],
                                            config.vocab_size)

    self.cost = tf.reduce_mean(loss)
    self.final_state = state

    # self.lr = tf.Variable(0.001, trainable=False)
    tvars = tf.trainable_variables()
    grads, _ = tf.clip_by_global_norm(tf.gradients(self.cost, tvars),
                                      config.grad_clip)
    optimizer = tf.train.AdamOptimizer()#self.lr)
    self.train_op = optimizer.apply_gradients(zip(grads, tvars))

    self.summary_accuracy = tf.scalar_summary('accuracy', self.accuracy)
    tf.scalar_summary('cost', self.cost)
    self.summary_all = tf.merge_all_summaries() 
開發者ID:jxwufan,項目名稱:AssociativeRetrieval,代碼行數:52,代碼來源:LSTM_model.py

示例5: build_graph

# 需要導入模塊: from tensorflow.python.ops import seq2seq [as 別名]
# 或者: from tensorflow.python.ops.seq2seq import sequence_loss_by_example [as 別名]
def build_graph(self):
    config = self.config
    self.reader = utils.DataReader(seq_len=config.seq_length, batch_size=config.batch_size, data_filename=config.data_filename)

    self.cell = LayerNormFastWeightsBasicRNNCell(num_units=config.rnn_size)

    self.input_data = tf.placeholder(tf.int32, [None, config.input_length])
    self.targets = tf.placeholder(tf.int32, [None, 1])
    self.initial_state = self.cell.zero_state(tf.shape(self.targets)[0], tf.float32)
    self.initial_fast_weights = self.cell.zero_fast_weights(tf.shape(self.targets)[0], tf.float32)

    with tf.variable_scope("input_embedding"):
      embedding = tf.get_variable("embedding", [config.vocab_size, config.embedding_size])
      inputs = tf.split(1, config.input_length, tf.nn.embedding_lookup(embedding, self.input_data))
      inputs = [tf.squeeze(input, [1]) for input in inputs]

    with tf.variable_scope("send_to_rnn"):
      state = (self.initial_state, self.initial_fast_weights)
      output = None

      for i, input in enumerate(inputs):
        if i > 0:
          tf.get_variable_scope().reuse_variables()
        output, state = self.cell(input, state)

    with tf.variable_scope("softmax"):
      softmax_w = tf.get_variable("softmax_w", [config.rnn_size, config.vocab_size])
      softmax_b = tf.get_variable("softmax_b", [config.vocab_size])
      self.logits = tf.matmul(output, softmax_w) + softmax_b
      self.probs = tf.nn.softmax(self.logits)
      self.output = tf.cast(tf.reshape(tf.arg_max(self.probs, 1), [-1, 1]), tf.int32)
      self.accuracy = tf.reduce_mean(tf.cast(tf.equal(self.output, self.targets), tf.float32))

    loss = seq2seq.sequence_loss_by_example([self.logits],
                                            [tf.reshape(self.targets, [-1])],
                                            [tf.ones([config.batch_size])],
                                            config.vocab_size)

    self.cost = tf.reduce_mean(loss)
    self.final_state = state

    # self.lr = tf.Variable(0.001, trainable=False)
    tvars = tf.trainable_variables()
    grads, _ = tf.clip_by_global_norm(tf.gradients(self.cost, tvars),
                                      config.grad_clip)
    optimizer = tf.train.AdamOptimizer()  # self.lr)
    self.train_op = optimizer.apply_gradients(zip(grads, tvars))

    self.summary_accuracy = tf.scalar_summary('accuracy', self.accuracy)
    tf.scalar_summary('cost', self.cost)
    self.summary_all = tf.merge_all_summaries() 
開發者ID:jxwufan,項目名稱:AssociativeRetrieval,代碼行數:53,代碼來源:FW_model.py

示例6: __init__

# 需要導入模塊: from tensorflow.python.ops import seq2seq [as 別名]
# 或者: from tensorflow.python.ops.seq2seq import sequence_loss_by_example [as 別名]
def __init__(self, args, infer=False):
        self.args = args
        if infer:
            args.batch_size = 1
            args.seq_length = 1

        if args.model == 'rnn':
            cell_fn = rnn_cell.BasicRNNCell
        elif args.model == 'gru':
            cell_fn = rnn_cell.GRUCell
        elif args.model == 'lstm':
            cell_fn = rnn_cell.BasicLSTMCell
        else:
            raise Exception("model type not supported: {}".format(args.model))

        cell = cell_fn(args.rnn_size)

        self.cell = cell = rnn_cell.MultiRNNCell([cell] * args.num_layers)

        self.input_data = tf.placeholder(tf.int32, [args.batch_size, args.seq_length])
        self.targets = tf.placeholder(tf.int32, [args.batch_size, args.seq_length])
        self.initial_state = cell.zero_state(args.batch_size, tf.float32)

        with tf.variable_scope('rnnlm'):
            softmax_w = tf.get_variable("softmax_w", [args.rnn_size, args.vocab_size])
            softmax_b = tf.get_variable("softmax_b", [args.vocab_size])
            with tf.device("/cpu:0"):
                embedding = tf.get_variable("embedding", [args.vocab_size, args.rnn_size])
                inputs = tf.split(1, args.seq_length, tf.nn.embedding_lookup(embedding, self.input_data))
                inputs = [tf.squeeze(input_, [1]) for input_ in inputs]

        def loop(prev, _):
            prev = tf.matmul(prev, softmax_w) + softmax_b
            prev_symbol = tf.stop_gradient(tf.argmax(prev, 1))
            return tf.nn.embedding_lookup(embedding, prev_symbol)

        outputs, last_state = seq2seq.rnn_decoder(inputs, self.initial_state, cell, loop_function=loop if infer else None, scope='rnnlm')
        output = tf.reshape(tf.concat(1, outputs), [-1, args.rnn_size])
        self.logits = tf.matmul(output, softmax_w) + softmax_b
        self.probs = tf.nn.softmax(self.logits)
        loss = seq2seq.sequence_loss_by_example([self.logits],
                [tf.reshape(self.targets, [-1])],
                [tf.ones([args.batch_size * args.seq_length])],
                args.vocab_size)
        self.cost = tf.reduce_sum(loss) / args.batch_size / args.seq_length
        self.final_state = last_state
        self.lr = tf.Variable(0.0, trainable=False)
        tvars = tf.trainable_variables()
        grads, _ = tf.clip_by_global_norm(tf.gradients(self.cost, tvars),
                args.grad_clip)
        optimizer = tf.train.AdamOptimizer(self.lr)
        self.train_op = optimizer.apply_gradients(zip(grads, tvars)) 
開發者ID:KGPML,項目名稱:KGP-ASR,代碼行數:54,代碼來源:model.py

示例7: __init__

# 需要導入模塊: from tensorflow.python.ops import seq2seq [as 別名]
# 或者: from tensorflow.python.ops.seq2seq import sequence_loss_by_example [as 別名]
def __init__(self, args, infer=False):
        self.args = args
        if infer:
            args.batch_size = 1
            args.seq_length = 1

        if args.rnncell == 'rnn':
            cell_fn = rnn_cell.BasicRNNCell
        elif args.rnncell == 'gru':
            cell_fn = rnn_cell.GRUCell
        elif args.rnncell == 'lstm':
            cell_fn = rnn_cell.BasicLSTMCell
        else:
            raise Exception("rnncell type not supported: {}".format(args.rnncell))

        cell = cell_fn(args.rnn_size)
        self.cell = rnn_cell.MultiRNNCell([cell] * args.num_layers)
        self.input_data = tf.placeholder(tf.int32, [args.batch_size, args.seq_length])
        self.targets = tf.placeholder(tf.int32, [args.batch_size, args.seq_length])
        self.initial_state = self.cell.zero_state(args.batch_size, tf.float32)
        with tf.variable_scope('rnnlm'):
            softmax_w = build_weight([args.rnn_size, args.vocab_size],name='soft_w')
            softmax_b = build_weight([args.vocab_size],name='soft_b')
            word_embedding = build_weight([args.vocab_size, args.embedding_size],name='word_embedding')
            inputs_list = tf.split(1, args.seq_length, tf.nn.embedding_lookup(word_embedding, self.input_data))
            inputs_list = [tf.squeeze(input_, [1]) for input_ in inputs_list]
        def loop(prev, _):
            prev = tf.matmul(prev, softmax_w) + softmax_b
            prev_symbol = tf.stop_gradient(tf.argmax(prev, 1))
            return tf.nn.embedding_lookup(embedding, prev_symbol)

	if not args.attention:
            outputs, last_state = seq2seq.rnn_decoder(inputs_list, self.initial_state, self.cell, loop_function=loop if infer else None, scope='rnnlm')
	else:
	    self.attn_length = 5
	    self.attn_size = 32
	    self.attention_states = build_weight([args.batch_size, self.attn_length, self.attn_size]) 
            outputs, last_state = seq2seq.attention_decoder(inputs_list, self.initial_state, self.attention_states, self.cell, loop_function=loop if infer else None, scope='rnnlm')

        self.final_state = last_state
        output = tf.reshape(tf.concat(1, outputs), [-1, args.rnn_size])
        self.logits = tf.matmul(output, softmax_w) + softmax_b
        self.probs = tf.nn.softmax(self.logits)
        loss = seq2seq.sequence_loss_by_example([self.logits],
                [tf.reshape(self.targets, [-1])],
                [tf.ones([args.batch_size * args.seq_length])],
                args.vocab_size)
	# average loss for each word of each timestep
        self.cost = tf.reduce_sum(loss) / args.batch_size / args.seq_length
        self.lr = tf.Variable(0.0, trainable=False)
	self.var_trainable_op = tf.trainable_variables()
        grads, _ = tf.clip_by_global_norm(tf.gradients(self.cost, self.var_trainable_op),
                args.grad_clip)
        optimizer = tf.train.AdamOptimizer(self.lr)
        self.train_op = optimizer.apply_gradients(zip(grads, self.var_trainable_op))
	self.initial_op = tf.initialize_all_variables()
	self.saver = tf.train.Saver(tf.all_variables(),max_to_keep=5,keep_checkpoint_every_n_hours=1)
	self.logfile = args.log_dir+str(datetime.datetime.strftime(datetime.datetime.now(),'%Y-%m-%d %H:%M:%S')+'.txt').replace(' ','').replace('/','')
	self.var_op = tf.all_variables() 
開發者ID:hundred06,項目名稱:jaylyrics_generation_tensorflow,代碼行數:61,代碼來源:seq2seq_rnn.py

示例8: __init__

# 需要導入模塊: from tensorflow.python.ops import seq2seq [as 別名]
# 或者: from tensorflow.python.ops.seq2seq import sequence_loss_by_example [as 別名]
def __init__(self, args, embedding):
        self.args = args

        if args.model == 'rnn':
            cell_fn = rnn_cell.BasicRNNCell
        elif args.model == 'gru':
            cell_fn = rnn_cell.GRUCell
        elif args.model == 'lstm':
            cell_fn = rnn_cell.BasicLSTMCell
        else:
            raise Exception("model type not supported: {}".format(args.model))

        cell = cell_fn(args.rnn_size)

        self.cell = cell = rnn_cell.MultiRNNCell([cell] * args.num_layers)

        self.input_data = tf.placeholder(tf.int32, [args.batch_size, args.seq_length], name='STAND_input')
        self.targets = tf.placeholder(tf.int32, [args.batch_size, args.seq_length], name='STAND_targets')
        self.initial_state = cell.zero_state(args.batch_size, tf.float32)
        self.embedding = embedding
        with tf.variable_scope('STAND'):
            softmax_w = tf.get_variable("softmax_w", [args.rnn_size, args.vocab_size])
            softmax_b = tf.get_variable("softmax_b", [args.vocab_size])
            inputs = tf.split(1, args.seq_length, tf.nn.embedding_lookup(self.embedding, self.input_data))
            inputs = map(lambda i: tf.nn.l2_normalize(i, 1), [tf.squeeze(input_, [1]) for input_ in inputs])

        def loop(prev, i):
            prev = tf.matmul(prev, softmax_w) + softmax_b
            prev_symbol = tf.stop_gradient(tf.argmax(prev, 1))
            return tf.nn.l2_normalize(tf.nn.embedding_lookup(embedding, prev_symbol), 1)

        o, _ = seq2seq.rnn_decoder(inputs, self.initial_state, cell, loop_function=None, scope='STAND')
        with tf.variable_scope('STAND', reuse=True) as scope:
            sf_o, _ = seq2seq.rnn_decoder(inputs, self.initial_state, cell, loop_function=loop, scope=scope)
        output = tf.reshape(tf.concat(1, o), [-1, args.rnn_size])
        self.logits = tf.matmul(output, softmax_w) + softmax_b
        self.probs = tf.nn.softmax(self.logits)

        sf_output = tf.reshape(tf.concat(1, sf_o), [-1, args.rnn_size])
        self_feed_logits = tf.matmul(sf_output, softmax_w) + softmax_b
        self.self_feed_probs = tf.nn.softmax(self_feed_logits)

        loss = seq2seq.sequence_loss_by_example([self.logits],
                [tf.reshape(self.targets, [-1])],
                [tf.ones([args.batch_size * args.seq_length])],
                args.vocab_size)
        self.loss = tf.reduce_sum(loss) / args.batch_size / args.seq_length
        self.lr = tf.Variable(0.0, trainable=False)
        tvars = tf.trainable_variables()
        grads, _ = tf.clip_by_global_norm(tf.gradients(self.loss, tvars),
                args.grad_clip)
        for g, v in zip(grads, tvars):
            print v.name
        optimizer = tf.train.AdamOptimizer(self.lr)
        self.train_op = optimizer.apply_gradients(zip(grads, tvars)) 
開發者ID:AustinStoneProjects,項目名稱:TextGAN,代碼行數:57,代碼來源:standard_model.py


注:本文中的tensorflow.python.ops.seq2seq.sequence_loss_by_example方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。