當前位置: 首頁>>代碼示例>>Python>>正文


Python seq2seq.sequence_loss方法代碼示例

本文整理匯總了Python中tensorflow.python.ops.seq2seq.sequence_loss方法的典型用法代碼示例。如果您正苦於以下問題:Python seq2seq.sequence_loss方法的具體用法?Python seq2seq.sequence_loss怎麽用?Python seq2seq.sequence_loss使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.ops.seq2seq的用法示例。


在下文中一共展示了seq2seq.sequence_loss方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: sequence_loss

# 需要導入模塊: from tensorflow.python.ops import seq2seq [as 別名]
# 或者: from tensorflow.python.ops.seq2seq import sequence_loss [as 別名]
def sequence_loss(self, y_pred, y_true):
        '''
        Loss function for the seq2seq RNN.  Reshape predicted and true (label) tensors, generate dummy weights,
        then use seq2seq.sequence_loss to actually compute the loss function.
        '''
        if self.verbose > 2: print ("my_sequence_loss y_pred=%s, y_true=%s" % (y_pred, y_true))
        logits = tf.unpack(y_pred, axis=1)		# list of [-1, num_decoder_synbols] elements
        targets = tf.unpack(y_true, axis=1)		# y_true has shape [-1, self.out_seq_len]; unpack to list of self.out_seq_len [-1] elements
        if self.verbose > 2:
            print ("my_sequence_loss logits=%s" % (logits,))
            print ("my_sequence_loss targets=%s" % (targets,))
        weights = [tf.ones_like(yp, dtype=tf.float32) for yp in targets]
        if self.verbose > 4: print ("my_sequence_loss weights=%s" % (weights,))
        sl = seq2seq.sequence_loss(logits, targets, weights)
        if self.verbose > 2: print ("my_sequence_loss return = %s" % sl)
        return sl 
開發者ID:ichuang,項目名稱:tflearn_seq2seq,代碼行數:18,代碼來源:tflearn_seq2seq.py

示例2: add_loss_op

# 需要導入模塊: from tensorflow.python.ops import seq2seq [as 別名]
# 或者: from tensorflow.python.ops.seq2seq import sequence_loss [as 別名]
def add_loss_op(self, output):
    """Adds loss ops to the computational graph.

    Hint: Use tensorflow.python.ops.seq2seq.sequence_loss to implement sequence loss. 

    Args:
      output: A tensor of shape (None, self.vocab)
    Returns:
      loss: A 0-d tensor (scalar)
    """
    ### YOUR CODE HERE
    all_ones = [tf.ones([self.config.batch_size * self.config.num_steps])]
    cross_entropy = sequence_loss(												# cross entropy
        [output], [tf.reshape(self.labels_placeholder, [-1])], all_ones, len(self.vocab))
    tf.add_to_collection('total_loss', cross_entropy)
    loss = tf.add_n(tf.get_collection('total_loss'))							# ???loss
    ### END YOUR CODE
    return loss 
開發者ID:AliceDudu,項目名稱:Named-Entity-Recognition,代碼行數:20,代碼來源:q3_RNNLM.py

示例3: add_loss_op

# 需要導入模塊: from tensorflow.python.ops import seq2seq [as 別名]
# 或者: from tensorflow.python.ops.seq2seq import sequence_loss [as 別名]
def add_loss_op(self, output):
    """Adds loss ops to the computational graph.

    Hint: Use tensorflow.python.ops.seq2seq.sequence_loss to implement sequence loss. 

    Args:
      output: A tensor of shape (None, self.vocab)
    Returns:
      loss: A 0-d tensor (scalar)
    """
    ### YOUR CODE HERE
    targets = [tf.reshape(self.labels_placeholder, (-1,))]
    weights = [tf.ones((self.config.batch_size * self.config.num_steps,))]
    loss = sequence_loss([output], targets, weights)
    ### END YOUR CODE
    return loss 
開發者ID:kkihara,項目名稱:cs224d,代碼行數:18,代碼來源:q3_RNNLM.py

示例4: model_with_buckets

# 需要導入模塊: from tensorflow.python.ops import seq2seq [as 別名]
# 或者: from tensorflow.python.ops.seq2seq import sequence_loss [as 別名]
def model_with_buckets(encoder_inputs, decoder_inputs, targets, weights,
                       buckets, seq2seq, softmax_loss_function=None,
                       per_example_loss=False, name=None):

    if len(encoder_inputs) < buckets[-1][0]:
        raise ValueError("Length of encoder_inputs (%d) must be at least that of la"
                            "st bucket (%d)." % (len(encoder_inputs), buckets[-1][0]))
    if len(targets) < buckets[-1][1]:
        raise ValueError("Length of targets (%d) must be at least that of last"
                        "bucket (%d)." % (len(targets), buckets[-1][1]))
    if len(weights) < buckets[-1][1]:
        raise ValueError("Length of weights (%d) must be at least that of last"
                            "bucket (%d)." % (len(weights), buckets[-1][1]))

    all_inputs = encoder_inputs + decoder_inputs + targets + weights
    losses = []
    outputs = []
    with ops.op_scope(all_inputs, name, "model_with_buckets"):
        for j, bucket in enumerate(buckets):
            with variable_scope.variable_scope(variable_scope.get_variable_scope(),
                                                reuse=True if j > 0 else None):
                bucket_outputs, _, _ = seq2seq(encoder_inputs[:bucket[0]], decoder_inputs[:bucket[1]])

                outputs.append(bucket_outputs)
                if per_example_loss:
                    losses.append(sequence_loss_by_example(
                        outputs[-1], targets[:bucket[1]], weights[:bucket[1]],
                        softmax_loss_function=softmax_loss_function))
                else:
                    losses.append(sequence_loss(
                        outputs[-1], targets[:bucket[1]], weights[:bucket[1]],
                        softmax_loss_function=softmax_loss_function))

    return outputs, losses 
開發者ID:icoxfog417,項目名稱:DialogueBreakdownDetection2016,代碼行數:36,代碼來源:tensorflow_custom.py


注:本文中的tensorflow.python.ops.seq2seq.sequence_loss方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。