本文整理匯總了Python中tensorflow.python.ops.seq2seq.rnn_decoder方法的典型用法代碼示例。如果您正苦於以下問題:Python seq2seq.rnn_decoder方法的具體用法?Python seq2seq.rnn_decoder怎麽用?Python seq2seq.rnn_decoder使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.seq2seq
的用法示例。
在下文中一共展示了seq2seq.rnn_decoder方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: generate
# 需要導入模塊: from tensorflow.python.ops import seq2seq [as 別名]
# 或者: from tensorflow.python.ops.seq2seq import rnn_decoder [as 別名]
def generate(self):
inputs = tf.split(1, self.args.seq_length, tf.nn.embedding_lookup(self.embedding, self.input_data))
inputs = map(lambda i: tf.nn.l2_normalize(i, 1), [tf.squeeze(input_, [1]) for input_ in inputs])
def loop(prev, i):
return prev
with tf.variable_scope('GEN', reuse=self.has_init_seq2seq) as scope:
self.has_init_seq2seq = True
if self.args.num_layers == 1:
outputs, last_state = seq2seq.rnn_decoder(inputs, [self.initial_state1], self.cell, loop_function=loop, scope=scope)
elif self.args.num_layers == 2:
outputs, last_state = seq2seq.rnn_decoder(inputs, [self.initial_state1, self.initial_state2], self.cell, loop_function=loop, scope=scope)
else:
raise Exception('Unsupported number of layers. Use 1 or 2 layers for now..')
outputs = map(lambda o: tf.nn.l2_normalize(o, 1), outputs)
self.outputs = outputs
return outputs
示例2: discriminate_wv
# 需要導入模塊: from tensorflow.python.ops import seq2seq [as 別名]
# 或者: from tensorflow.python.ops.seq2seq import rnn_decoder [as 別名]
def discriminate_wv(self, input_data_wv):
with tf.variable_scope('DISC', reuse=self.has_init_seq2seq) as scope:
self.has_init_seq2seq = True
output_wv, states_wv = seq2seq.rnn_decoder(input_data_wv, self.initial_state, self.cell, scope=scope)
predicted_classes_wv = tf.matmul(output_wv[-1], self.fc_layer)
return predicted_classes_wv
示例3: __init__
# 需要導入模塊: from tensorflow.python.ops import seq2seq [as 別名]
# 或者: from tensorflow.python.ops.seq2seq import rnn_decoder [as 別名]
def __init__(self, args, infer=False):
self.args = args
if infer:
args.batch_size = 1
args.seq_length = 1
if args.model == 'rnn':
cell_fn = rnn_cell.BasicRNNCell
elif args.model == 'gru':
cell_fn = rnn_cell.GRUCell
elif args.model == 'lstm':
cell_fn = rnn_cell.BasicLSTMCell
else:
raise Exception("model type not supported: {}".format(args.model))
cell = cell_fn(args.rnn_size)
self.cell = cell = rnn_cell.MultiRNNCell([cell] * args.num_layers)
self.input_data = tf.placeholder(tf.int32, [args.batch_size, args.seq_length])
self.targets = tf.placeholder(tf.int32, [args.batch_size, args.seq_length])
self.initial_state = cell.zero_state(args.batch_size, tf.float32)
with tf.variable_scope('rnnlm'):
softmax_w = tf.get_variable("softmax_w", [args.rnn_size, args.vocab_size])
softmax_b = tf.get_variable("softmax_b", [args.vocab_size])
with tf.device("/cpu:0"):
embedding = tf.get_variable("embedding", [args.vocab_size, args.rnn_size])
inputs = tf.split(1, args.seq_length, tf.nn.embedding_lookup(embedding, self.input_data))
inputs = [tf.squeeze(input_, [1]) for input_ in inputs]
def loop(prev, _):
prev = tf.matmul(prev, softmax_w) + softmax_b
prev_symbol = tf.stop_gradient(tf.argmax(prev, 1))
return tf.nn.embedding_lookup(embedding, prev_symbol)
outputs, last_state = seq2seq.rnn_decoder(inputs, self.initial_state, cell, loop_function=loop if infer else None, scope='rnnlm')
output = tf.reshape(tf.concat(1, outputs), [-1, args.rnn_size])
self.logits = tf.matmul(output, softmax_w) + softmax_b
self.probs = tf.nn.softmax(self.logits)
loss = seq2seq.sequence_loss_by_example([self.logits],
[tf.reshape(self.targets, [-1])],
[tf.ones([args.batch_size * args.seq_length])],
args.vocab_size)
self.cost = tf.reduce_sum(loss) / args.batch_size / args.seq_length
self.final_state = last_state
self.lr = tf.Variable(0.0, trainable=False)
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(self.cost, tvars),
args.grad_clip)
optimizer = tf.train.AdamOptimizer(self.lr)
self.train_op = optimizer.apply_gradients(zip(grads, tvars))
示例4: __init__
# 需要導入模塊: from tensorflow.python.ops import seq2seq [as 別名]
# 或者: from tensorflow.python.ops.seq2seq import rnn_decoder [as 別名]
def __init__(self, args, infer=False):
self.args = args
if infer:
args.batch_size = 1
args.seq_length = 1
if args.rnncell == 'rnn':
cell_fn = rnn_cell.BasicRNNCell
elif args.rnncell == 'gru':
cell_fn = rnn_cell.GRUCell
elif args.rnncell == 'lstm':
cell_fn = rnn_cell.BasicLSTMCell
else:
raise Exception("rnncell type not supported: {}".format(args.rnncell))
cell = cell_fn(args.rnn_size)
self.cell = rnn_cell.MultiRNNCell([cell] * args.num_layers)
self.input_data = tf.placeholder(tf.int32, [args.batch_size, args.seq_length])
self.targets = tf.placeholder(tf.int32, [args.batch_size, args.seq_length])
self.initial_state = self.cell.zero_state(args.batch_size, tf.float32)
with tf.variable_scope('rnnlm'):
softmax_w = build_weight([args.rnn_size, args.vocab_size],name='soft_w')
softmax_b = build_weight([args.vocab_size],name='soft_b')
word_embedding = build_weight([args.vocab_size, args.embedding_size],name='word_embedding')
inputs_list = tf.split(1, args.seq_length, tf.nn.embedding_lookup(word_embedding, self.input_data))
inputs_list = [tf.squeeze(input_, [1]) for input_ in inputs_list]
def loop(prev, _):
prev = tf.matmul(prev, softmax_w) + softmax_b
prev_symbol = tf.stop_gradient(tf.argmax(prev, 1))
return tf.nn.embedding_lookup(embedding, prev_symbol)
if not args.attention:
outputs, last_state = seq2seq.rnn_decoder(inputs_list, self.initial_state, self.cell, loop_function=loop if infer else None, scope='rnnlm')
else:
self.attn_length = 5
self.attn_size = 32
self.attention_states = build_weight([args.batch_size, self.attn_length, self.attn_size])
outputs, last_state = seq2seq.attention_decoder(inputs_list, self.initial_state, self.attention_states, self.cell, loop_function=loop if infer else None, scope='rnnlm')
self.final_state = last_state
output = tf.reshape(tf.concat(1, outputs), [-1, args.rnn_size])
self.logits = tf.matmul(output, softmax_w) + softmax_b
self.probs = tf.nn.softmax(self.logits)
loss = seq2seq.sequence_loss_by_example([self.logits],
[tf.reshape(self.targets, [-1])],
[tf.ones([args.batch_size * args.seq_length])],
args.vocab_size)
# average loss for each word of each timestep
self.cost = tf.reduce_sum(loss) / args.batch_size / args.seq_length
self.lr = tf.Variable(0.0, trainable=False)
self.var_trainable_op = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(self.cost, self.var_trainable_op),
args.grad_clip)
optimizer = tf.train.AdamOptimizer(self.lr)
self.train_op = optimizer.apply_gradients(zip(grads, self.var_trainable_op))
self.initial_op = tf.initialize_all_variables()
self.saver = tf.train.Saver(tf.all_variables(),max_to_keep=5,keep_checkpoint_every_n_hours=1)
self.logfile = args.log_dir+str(datetime.datetime.strftime(datetime.datetime.now(),'%Y-%m-%d %H:%M:%S')+'.txt').replace(' ','').replace('/','')
self.var_op = tf.all_variables()
示例5: __init__
# 需要導入模塊: from tensorflow.python.ops import seq2seq [as 別名]
# 或者: from tensorflow.python.ops.seq2seq import rnn_decoder [as 別名]
def __init__(self, args, embedding):
self.args = args
if args.model == 'rnn':
cell_fn = rnn_cell.BasicRNNCell
elif args.model == 'gru':
cell_fn = rnn_cell.GRUCell
elif args.model == 'lstm':
cell_fn = rnn_cell.BasicLSTMCell
else:
raise Exception("model type not supported: {}".format(args.model))
cell = cell_fn(args.rnn_size)
self.cell = cell = rnn_cell.MultiRNNCell([cell] * args.num_layers)
self.input_data = tf.placeholder(tf.int32, [args.batch_size, args.seq_length], name='STAND_input')
self.targets = tf.placeholder(tf.int32, [args.batch_size, args.seq_length], name='STAND_targets')
self.initial_state = cell.zero_state(args.batch_size, tf.float32)
self.embedding = embedding
with tf.variable_scope('STAND'):
softmax_w = tf.get_variable("softmax_w", [args.rnn_size, args.vocab_size])
softmax_b = tf.get_variable("softmax_b", [args.vocab_size])
inputs = tf.split(1, args.seq_length, tf.nn.embedding_lookup(self.embedding, self.input_data))
inputs = map(lambda i: tf.nn.l2_normalize(i, 1), [tf.squeeze(input_, [1]) for input_ in inputs])
def loop(prev, i):
prev = tf.matmul(prev, softmax_w) + softmax_b
prev_symbol = tf.stop_gradient(tf.argmax(prev, 1))
return tf.nn.l2_normalize(tf.nn.embedding_lookup(embedding, prev_symbol), 1)
o, _ = seq2seq.rnn_decoder(inputs, self.initial_state, cell, loop_function=None, scope='STAND')
with tf.variable_scope('STAND', reuse=True) as scope:
sf_o, _ = seq2seq.rnn_decoder(inputs, self.initial_state, cell, loop_function=loop, scope=scope)
output = tf.reshape(tf.concat(1, o), [-1, args.rnn_size])
self.logits = tf.matmul(output, softmax_w) + softmax_b
self.probs = tf.nn.softmax(self.logits)
sf_output = tf.reshape(tf.concat(1, sf_o), [-1, args.rnn_size])
self_feed_logits = tf.matmul(sf_output, softmax_w) + softmax_b
self.self_feed_probs = tf.nn.softmax(self_feed_logits)
loss = seq2seq.sequence_loss_by_example([self.logits],
[tf.reshape(self.targets, [-1])],
[tf.ones([args.batch_size * args.seq_length])],
args.vocab_size)
self.loss = tf.reduce_sum(loss) / args.batch_size / args.seq_length
self.lr = tf.Variable(0.0, trainable=False)
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(self.loss, tvars),
args.grad_clip)
for g, v in zip(grads, tvars):
print v.name
optimizer = tf.train.AdamOptimizer(self.lr)
self.train_op = optimizer.apply_gradients(zip(grads, tvars))